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Abstract
A novel approach to the analysis of S & P 500 market fluctuations is proposed

using a K-component mixture of regressions model. The Barndorff-Nielsen and

Shephard stochastic model is employed where the estimates of jumps of log-

returns are governed by L�evy subordinators. Daily VIX and VIX2 close prices are

analyzed as the indicators of log-return volatility and the corresponding variance

of the S & P 500 index using the mixture model. The behavior of the S & P 500

market from 1 August 2005 to 31 December 2009 is analyzed and forecasted. A

set of rules are provided to predict monthly fluctuation in the S & P 500 market.

The procedure used in this paper gives a novel approach for constructing an

“indicator”of non-Gaussian jump of an empirical data set in finance using mixture

of regression (Gaussian) analysis.
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1 | INTRODUCTION

Stochastic models are commonly used in assessing price
volatility, which is the most important parameter in
managing risk, investment portfolios, and asset pricing.
Historically, stock market performance was examined
periodically from tick-by-tick, half-hour, day, month,
quarter, to year for trends. A large volume of research is
dedicated to mathematical modeling of the behavior of
price volatility with a goal of forecasting the behavior of
the market in the next time period. Investors and traders
who understand the market’s daily, weekly, monthly,
quarterly, or annual rhythms may be better equipped to
make investment and pricing decisions. In this paper, we
focus on the empirical movement of price volatility in the
S & P 500 market reflected in financial instruments and
derivatives.

The VIX, which is officially known as the Chicago
Board Options Exchange (CBOE) Volatility Index, is con-
sidered by many to be a gauge of fear and greed in the
stock market. More precisely, VIX measures the implied
volatility in S & P 500 options. Through the use of a wide
variety of option prices, the index gives an estimation of
30-day implied volatility as priced by the S & P 500 index
option market. This index can be used to estimate the nat-
ure of market movement that the option prices are project-
ing on the S & P 500 over the next 30-day (or shorter)
period. The VIX has an inverse relationship to perfor-
mance of the S & P 500—a fall of the latter usually corre-
sponds to a rise of the former. After the VIX was
introduced, the CBOE introduced futures based on the
VIX. Since then, many other financial instruments have
been developed or are in the process of development. On
24 February 2006, options on the VIX began on the
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CBOE. This gives investors a way to trade the volatility of
volatility.

The calculation of VIX depends on the input from all
actively quoted S & P 500 index options for the next two
standard expirations with reasonable time to expiry (usually
8 days). The elimination of short term expiration takes out
some of the “end of contract” fluctuations that may occur
in the market. The options from the two expiration series
are the at- and out-of-the-money vanilla options. The series
of options used extends out-of-the-money as long as there
are two successive option strikes that have no bid-ask mar-
ket posted. The time to expiration is constantly updated.
The forward price for the S & P 500 is calculated using
put-call parity for the closest at-the-money options. A for-
ward price obtained in this way gives the underlying secu-
rity price and strike price. This can be used to price the
synthetic option, and the implied volatility of such an
option is quoted at the VIX. Carr and Madan (1998) and
Britten-Jones and Neuberger (2000) show that the VIX can
be computed from the prices of call and put options with
the same maturity at different strike prices.

The VIX is used as an indicator of the S & P 500 market
(Rhoads, 2011). However, it is well known that VIX is
much more of a short-term than a long-term market indica-
tor. Spikes in volatility occur quickly, and then the market
returns to a stable condition over time. As a result, if the
length of time increases, the effectiveness of using VIX
decreases as an indicator. Currently, few papers have inves-
tigated effectively using VIX to forecast S & P 500 move-
ment. For example, in Lu and Zhu (2010) and
Christoffersen, Jacobs, and Mimouni (2010), the nature and
importance of volatility risk are discussed by analyzing the
pricing of VIX futures. In the paper of Cao and Han (2013),
delta-hedging strategies are used related to VIX as a stan-
dard risk management technique of option traders in the
financial industry. Hardy (2001) developed a regime-switch-
ing log-normal model for modeling S & P 500 stock return
behavior. The model parameters are derived using maxi-
mum likelihood estimation. In this paper, we systematically
analyze the VIX by using EM algorithm for mixture of
regressions. We show that this analysis is helpful for under-
standing and predicting the nature of the S & P 500 market.

Mixtures of regression models were introduced in
Quandt and Ramsey (1978), as a form of “switching
regressions.” In that paper, the model parameters of the
model are estimated using a technique based on a moment-
generating function. In De Veaux (1989), an EM algorithm
is considered to fit an application with two regressions. In
Jones and McLachlan (1992), mixtures of regressions are
studied in a data analysis, and the Expectation-Maximiza-
tion (EM) algorithm is used to fit these models. The prob-
lem of determining a number of components in a mixture
of linear models is studied by Hawkins, Allen, and

Stromberg (2001). In Zhu and Zhang (2004), an asymptotic
theory is developed for maximum-likelihood estimators and
a hypothesis testing is proposed for mixture of regression
models.

This paper presents a novel approach for implementing
a mixture of regression technique in analyzing S & P 500
(empirical) data. For the problem studied in this paper, the
nature of the world and human being in social contexts
plays an important role. Consequently, ontological assump-
tions are important for this present work. Ontology asserts
that social phenomenon is independent from other factors.
Specifically, in this paper we propose a completely new
approach for analyzing the fluctuations in the S & P 500
market based on the VIX index. This approach is based on
a combined knowledge of regression mixtures modeling
and stochastic volatility modeling. Inspired by the paper of
Maitra (2009) that proposed a staged approach to specify-
ing initial values in partition-optimization algorithms, we
develop an efficient EM algorithm for mixture of regres-
sions that uses the stochastic initialization method based on
the Euclidean distance. We find that the short-term predic-
tion of the S & P 500 can be obtained by a methodical
analysis of this proposed method. In addition to that, this
paper gives a completely new empirical approach for con-
structing an “indicator” of non-Gaussian jump of an empir-
ical data set using mixture of regression (Gaussian)
analysis.

The organization of this paper is as follows: Section 2
describes the Barndorff-Nielsen and Shephard stochastic
model for modeling stock volatility along with the method-
ology behind the regression mixture modeling, parameter
estimation, a simulation study with initialization of the EM
algorithm, and model selection. Data description and the
analysis of the results are provided in Section 3. Section 4
provides a brief conclusion.

2 | METHODOLOGY

2.1 | Barndorff-Nielsen and Shephard (BN–S)
model for stock and volatility dynamics

In this section, we describe the empirical data under con-
sideration and model the data using L�evy processes. L�evy
processes are one of the most efficient building blocks of
modern financial models. Popular stochastic processes such
as Brownian motions or Poisson processes are special cases
of L�evy processes. In our analysis, we consider increasing
L�evy processes, which are also called subordinators.

The financial time series of different assets share many
common features such as heavy tailed distributions of log-
returns, aggregational Gaussianity, and quasi long-range
dependence. Many such features are successfully captured
by models in which stochastic volatility of log-returns is
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constructed through an Ornstein–Uhlenbeck (OU) type sta-
tionary stochastic process driven by a subordinator, where
a subordinator is a L�evy process with no Gaussian compo-
nent and positive increments. Using L�evy processes as the
driving noise, a large family of mean-reverting jump pro-
cesses with linear dynamics can be constructed. On these
processes, various properties such as positiveness or choice
of marginal distribution can be imposed. This model was
introduced in various works of Barndorff-Nielsen and
Shephard (2000, 2001) and is known in recent literature as
the BN–S model. Since the pioneering work of Barndorff-
Nielsen and Shephard, it is clear that their model has good
potential in option pricing and modeling market volatility.

Consider a frictionless financial market where a riskless
asset with constant return rate r and a stock are traded up
to a fixed horizon date T and t0 ≤ t ≤ T. Barndorff-Nielsen
and Shephard assumed that the price process of the stock
S = (St)t≥0 is defined on some filtered probability space
ðX;F ; ðF tÞ0� t� T ;PÞ and is given by:

St ¼ S0 expðXtÞ; (1)

dXt ¼ ðlþ br2
t Þdt þ rtdWt þ qdZkt; (2)

dr2
t ¼ �kr2

t dt þ dZkt; r2
t0 [ 0; (3)

where the parameters l, b, k 2 R with k > 0 and the
stochastic process rt govern the volatility of the return.
When the parameter q < 0, a leverage effect is incorpo-
rated in the model. Empirically, observations suggest that,
for most equities, a fall in price is associated with an
increase in volatility. The proposed model is in agreement
with this fact. For the model, W = (Wt) is a Brownian
motion and the process Z ¼ ðZktÞ is a subordinator with no
deterministic drift. Barndorff-Nielsen and Shephard refer to
Z as the background driving L�evy process (BDLP). Also W
and Z are assumed to be independent and ðF tÞ is assumed
to be the usual augmentation of the filtration generated by
the pair (W, Z). In Equation (2), the Brownian motion and
the L�evy process appear as a linear combination, and there-
fore, the dynamics of the process is linear. Also, the nega-
tive sign appearing in Equation (3) makes the associated
process mean-reverting. The fact that Equation (3) is driven
by Z (instead of W) makes the process non-Gaussian. The
unusual timing for Zkt is deliberately chosen so that the
marginal distribution of r2

t remains unchanged with respect
to values of k. This gives a flexibility to parameterize sepa-
rately the distribution of volatility and the dynamic struc-
ture (Barndorff-Nielsen & Shephard, 2001).

It is shown in Nicolato and Venardos (2003; Theo-
rem 3.2) that there exists an equivalent martingale measure
under which the equations (2) and (3) are transformed into
the following equations

dXt ¼ btdt þ rtdWt þ qdZkt; (4)

dr2
t ¼ �kr2

t dt þ dZkt; r2
t0 [ 0; (5)

where

bt ¼ ðr � kjðqÞ � r2
t =2Þ; (6)

andWt and Zkt are Brownian motion and L�evy process, respec-
tively, with respect to the equivalent martingale measure. In
the expression for bt, the cumulant transform for Z1 under the
new measure is denoted as j(h) and the risk-free interest rate is
given by r. Note that, for a distribution D the cumulant trans-
form is defined as j(h) = log E[ehD]. For the rest of this sec-
tion, we assume that the risk-neutral dynamics of the stock
price and volatility are given by Equations (1), (4) and (5).

Equation (5) can be written as

expðkðt � t0ÞÞ dr2
t þ kr2

t dt
� � ¼ expðkðt � t0ÞÞdZkt;

and therefore

dðexpðkðt � t0ÞÞr2
t Þ ¼ expðkðt � t0ÞÞdZkt:

Thus, the solution of Equation (5) can be explicitly
written as

r2
t ¼ expð�kðt � t0ÞÞr2

t0 þ
Z t

t0
expð�kðt � sÞÞdZks: (7)

Since Z is a subordinator with no drift, r2
t moves up

entirely with jumps and then tails off exponentially. Observe
that as Z is an increasing process and r2

t0 [ 0, the process
r2 ¼ ðr2

t Þ is strictly positive and is bounded from below by
the deterministic function r2

t0 expð�ktÞ. The instantaneous
variance of log-returns is given by ðr2

t þ q2kVar½Z1�Þdt.
Also, it can be proved that the autocorrelation function for
the instantaneous volatility is given by r(h) = exp (�k|h|)
(Jongbloed, Van Der Meulen, & Van Der Vaart, 2005).

For the S & P 500, we take VIX as an indicator of log-
return volatility. That is, VIX2 is an indicator of log-return
variance. Some work in estimating VIX for future time,
based on present VIX, is initiated in Huang and Shalias-
tovich (2014), Ait-Sahalia, Karaman, and Mancini (2015).
The squared VIX index at a given time t is the annualized
risk-neutral expectation of the quadratic variation of returns
from time t to t + s, for some s > 0. For the continuous
case, it is given by VIX2

t ¼ E½R tþs
t r2

s ds�=s, where E(�) is
the expectation under the risk-neutral measure. We compute
below the corresponding expression for the BN–S model.

We assume that there exists a L�evy density associated
with the jump measure of Z. Let the random measure asso-
ciated with the jumps of Z, and L�evy density of Z be given
by JZ(�,�) and mZ, respectively. Clearly, the compensator for
JZ(kdt, dx) is kmZ(dx)dt. Consequently, for the BN–S
model, we can compute the squared VIX index as (Cont &
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Tankov, 2004; Issaka & SenGupta, 2017),

VIX2
t ¼ E

Z tþs

t
r2
sdsþ

Z tþs

t

Z 1

0
q2z2JZðkdt; dxÞ

� �
=s

¼ E½
Z tþs

t
r2
sds�=sþ R;

(8)

where

R ¼ q2k
Z 1

0
z2mZðdzÞ; (9)

is independent of t. Therefore, with respect to the present
model, we obtain

VIX2
t �R¼ E

�Z tþs

t
r2sds

�
=s

¼E
�Z tþs

s¼t

�
expð�kðs� tÞÞr2t

þ
Z s

p¼t
expð�kðs�pÞÞdZkp

�
ds
�
=s

¼ðk�1ð1�expð�ksÞÞr2t
þEðZ1Þðs�k�1ð1�expð�ksÞÞ=s: ð10Þ

For the calculations based on empirical data, s is taken
to be 30 days. In view of Equation (10), for the present
model we can assume that the relationship between VIX
and volatility is linear and it is given by

VIX2
t ¼ Ar2

t þ B; (11)

where A = k�1(1�exp (�ks))/s and B = E(Z1)(s�k�1
(1�exp (�ks))/s + R, where R is given by Equation (9),
are constants for a given s (usually 30 days).

In the data set for a given date, we use VIX for 1 month
as the predictor of VIX for the next month. Assuming T = t0
+1 month = t0 + 1/12 (in the unit of a year), we obtain

r2
T ¼ expð�k=12Þr2

t0 þ
Z T

t0
expð�kðT � sÞÞdZks:

Therefore, using Equations (7) and (11) for t = t0 and
t = T, we can eliminate r2

t0 and r2
T and obtain the follow-

ing relation:

VIX2
T ¼ VIX2

t0 þ Aðr2
T � r2

t0Þ
¼ C1VIX2

t0 þ C2 þ J;
(12)

where C1 = exp (�k/12) and C2 = �B(exp (�k/12)�1)
are constants, and

J ¼ A
Z T

t0
expð�kðT � sÞÞdZks; (13)

measures the fluctuation in prediction of VIX2
T with the

knowledge of VIX2
t0 . We note that since C1 6¼ 0

therefore the “prediction” VIXT depends on the “predic-
tor” VIXt0.

If there exists a L�evy density w(x) corresponding to the
L�evy measure of subordinator Z, the value of J depends on
the w(x). In Section 3, based on empirical observations, we
propose an “indicator” F for L�evy density of Z. It will be
shown that a bigger value of F corresponds to bigger L�evy
density which in effect means a more volatile market.
Another interesting conclusion derived in Section 3 is that,
although the process Z is non-Gaussian, the indicator F,
which describes the L�evy density of Z, can be constructed
based on Gaussian processes. The indicator F can be used
effectively for forecasting the underlying empirical finan-
cial data set.

2.2 | A K-component mixture of regression
model

Consider the traditional form of the multiple regression
model

y ¼ Xbþ �; (14)

where ��Nð0;r2IÞ and b ¼ ðb0; b1; . . .; bpÞ> is a vector
of unknown parameters. The matrix, referred to as the
design matrix, X is of size n 9 (p + 1) and is assumed to
have rank equal to p + 1 (full column rank). The goal of
traditional multiple regression is to estimate the parameter
vector h ¼ ðb0; b1; . . .; bp;r

2Þ>. This is accomplished
through the least-squares method, which minimizes the
sum of squares of deviations for the n observed responses,
yi, from their fitted values, ðŷiÞ.

Instead of using a single model based on the entire pop-
ulation of data, assume that the population is partitioned
into K groups or subpopulations according to the following
finite mixture of linear regression model

yi ¼
x>i b1 þ �i1 with probability p1
x>i b2 þ �i2 with probability p2
..
.

x>i bK þ �iK with probability pK ;

8>>><
>>>:

where yi is the value of the response variable associated
with the ith observation, x>i ¼ ðxi1; . . .; xipÞ for i = 1,
. . ., n is the transpose of the (p + 1)- dimensional vector
of independent variables, bk for k = 1, . . ., K is the
(p + 1)- dimensional regression coefficient vector of the
kth component, and pk denotes a mixing probability of
the kth component satisfying 0� pk � 1, ∀k = 1, . . ., K
and

PK
k¼1 pk ¼ 1: Finally, the random error terms are

independent and distributed as �ik �Nð0;r2
kÞ.

For this model, the underlying conditional density of
yijxi is given by
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fhðyijxiÞ ¼
XK
k¼1

pk/ yijx>i bk;r2
k

� �
: (15)

where φ(.) is Gaussian density with mean x>b and variance
r2. The complete parameter vector is denoted as
h¼ðp1;p2;...;pK ;b1;b2;...;bK ;r2

1;r
2
2;...;r

2
KÞ>. In addition

to estimating h, we assume that K is not provided and we
estimate the number of components in the mixture.

2.3 | Parameter estimation via EM
Algorithm

The expectation-maximization (EM) algorithm, proposed
by Dempster, Laird and Rubin (1977), is a standard
method for finding estimates of the parameters of an under-
lying distribution in finite mixture models when there are
some missing or incomplete data. In our model, missing
observations correspond to group identifiers. If we think
about the data as consisting of triplets (xi, yi, zi), then zi is
alatent label corresponding to a mixture component from
which a pair (xi, yi) is drawn.

The EM algorithm is an iterative procedure that consists of
two steps: E-step (expectation) andM-step (maximization).

We start with defining a complete likelihood function
given by

LcðhÞ ¼
Yn
i¼1

YK
k¼1
½pk/ðyijx>i bk;r2

kÞ�
I½zi¼k� (16)

where I[.] is the indicator function with zi 2 1, . . ., K and
Pðzi ¼ k j x>i bk;r2

kÞ ¼ pk. The logarithm of Lc(h) is known
as the complete data log-likelihood given by

lcðhÞ ¼
Xn
i¼1

XK
k¼1

I½zi ¼ k�½logðpkÞ þ logð/ðyijx>i bk;r2
kÞÞ�:

(17)

The conditional expectation lcðhÞ on the current parame-
ter estimates and the observed data is defined as Q-function

Qðh; hðsÞÞ ¼
Xn
i¼1

XK
k¼1

pðsÞik ½logðpkÞ þ logð/ðyijx>i bk;r2
kÞÞ�

(18)

where h(s) is the value of h after the sth EM iteration and

pðsÞik ¼
pkðs�1Þ/yijx>i bðs�1Þk ;r2ðs�1Þ

kPK
k0¼1pk0 ðs�1Þðyijx>i bðs�1Þk0 ;r2ðs�1Þ

k0 Þ
;

i ¼ 1; . . .; n; k ¼ 1; . . .;K

(19)

represents the estimate of the posterior probability on the
sth iteration that the ith data point (xi, yi) belongs to the
kth component of the mixture, computed at the E-step.

As a part of the M-step, the Q-function is maximized
numerically, and parameter estimates are updated to h(s).
On the sth iteration of the M-step, parameter estimates are
given by

pðsÞk ¼
Pn

i¼1 p
ðsÞ
ik

n
; (20)

and

bk
ðsÞ ¼ ðX>PkXÞ�1X>Pky (21)

where X is a design matrix, Pk is a n 9 n diagonal matrix
of weights (p1k, . . ., pnk) for k = 1, . . ., K, and y is the
response variable vector of size n 9 1.

The estimate of variance r2ðsÞ
k on the sth iteration is

given by

r2ðsÞ
k ¼

Pn
i¼1p

ðsÞ
ik yi � x>i bk

ðsÞ
� 	2

Pn
i¼1p

ðsÞ
ik

(22)

The E-step and M-step are repeated until the relative
increase in the log-likelihood function is no bigger than
some small pre-specified tolerance value.

2.4 | Initialization of the EM algorithm and
simulation

Initialization of the EM algorithm is very important since
different starting strategies may lead to different solutions
or no solution at all. A large number of initialization proce-
dures are available and discussed in the literature by
McLachlan and Peel (2000) and Maitra (2009). Considering
the multimodal likelihood function of a finite mixture model
and the fact that the EM algorithm is strictly a climbing pro-
cedure, the optimal solution is associated with a local max-
ima. Thus, the choice of initialization is critically important
for determining the best global maximizer or the best local
maximizer when the likelihood function is unbounded.

In this paper, the EM algorithm is initialized using a
stochastic procedure similar to RndEM proposed by Maitra
(2009) in clustering data sets. Random k-points are selected
from the data, and they are assumed to represent the cen-
ters of the k-partitions. Other observations are assigned to
these groups based on the minimum Euclidian distance.
For defined clusters, the parameter estimates and the log-
likelihood are computed. This procedure is repeated m
times and the highest value of the log-likelihood function
is selected. Finally, a set of parameter estimates are pro-
posed to initialize the EM algorithm based on the highest
value of the log-likelihood.

We develop a simulation program in the statistical com-
puting environment R Core Team (2016) and validate the
performance of this initialization method in case of a
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2-component mixture model with true parameters selected
by component and defined as (1) b1 = (100, 0.1) with
r1 = 30, and (2) b2 = (200, 0.2) with r2 = 10. Mixing pro-
portions are assumed to be equal for the two groups as
p = (0.50, 0.50). These parameters are selected to somewhat
resemble the S & P VIX-squared price index for the period
August 2005 to August 2006. Observed measures are bias
computed as BIASðĥÞ ¼ 1

N

PN
m¼1ðĥðmÞ � hÞ; and mean-

squared error computed as MSEðĥÞ ¼ 1
N

PN
m¼1ðĥðmÞ � hÞ2.

Table 1 summarizes the results of 1,000 simulation runs.
The results show that this initialization method per-

forms very well leading to an insignificant value of BIAS
and MSE, especially in the case of mixing proportions,
which are modeled as predictors of jumps in VIX price
volatility.

2.5 | Model selection

In the case of mixture modeling, when the number of com-
ponents increases, the log-likelihood values as a function
of K will monotonically increase. Thus, the models with
different number of parameters require criteria that penalize
the log-likelihood values by adding a term that increases
with the number of parameters, balancing model fit with
model complexity. Two popular model selection procedures
include the Akaike information criterion (AIC), proposed
by Akaike (1974) and the Bayesian information criterion
(BIC), proposed by Schwarz (1978). While the AIC con-
siders twice the negative log-likelihood plus a penalty term
that is equal to twice the number of free parameters (M) in
the model, the BIC approach adjusts the log-likelihood by
a penalty term that considers the number of observations
(n) in the sample in addition to the number of parameters
in the model.

The formulas for AIC and BIC are given by the follow-
ing equations

AIC ¼ �2lþ 2M; (23)

BIC ¼ �2lþMlogðnÞ; (24)

where l(h) is the maximized log-likelihood, M is the num-
ber of free parameters in the model computed as
M = (K�1) + K(p + 1) + K, and n is the sample size. Our
goal is to find the number of components in the mixture
that will minimize AIC or BIC. The BIC is often preferred
in finite mixture modeling (Fraley & Raftery, 2002).

In addition to AIC and BIC, parametric bootstrapping
of the likelihood ratio test statistic (LRTS) can be used to
test the null hypothesis H0:K = K0 versus alternative
hypothesis Ha:K = Ka when Ka = K0 + 1 for some positive
integer value K0 [refer to, 1,000]. Let h0 denote vector of
parameter estimates under H0 and h1 denote vector of
parameter estimates under Ha. Then LRTS is defined as

LRTS ¼ �2 log k ¼ 2½lðh1Þ � lðh0Þ�: (25)

We expect when k is sufficiently small or LRTS is suf-
ficiently large that evidence against H0 will be strong. But
in the case of mixture models, LRTS does not have asymp-
totic null distribution of v2 equal to the difference between
the number of parameters under H0 and Ha because the
likelihood in the case of mixture models is not sufficiently
regular. A large volume of literature is devoted to studying
the null distribution of the LRTS for making inferences
about the number of components. Some theoretic results
are derived in special cases. For instance, McLachlan and
Peel (2000) showed that LRTS in the case of testing H0:
K = 1 versus Ha:K = 2 for the K-component univariate
normal mixtures has v6 rather than v4.

In order to overcome the problem of irregularity condi-
tions of LRTS, an effective and easy-to-implement resam-
pling approach is proposed by McLachlan and Peel (2000)
that is based on parametric bootstrapping of the LRTS. The
bootstrapping algorithm used in the analysis of VIX close
prices is outlined in Appendix 1. This algorithm is similar
to that implemented by Turner (2000).

We illustrate the bootstrapping method using VIX2

prices for the period August 2005 to August 2006. Two
cases are considered to test the hypothesis about the num-
ber of components. Case 1: H0:K = 1 versus Ha:K = 2 and
Case 2: H0:K = 2 versus Ha:K = 3. Figure 1 compares the
model fit with K = 1 to that model with K = 2.

The histograms of 200 bootstrap test statistics are plot-
ted in Figure 2. It is obvious that for this sample, a 2-com-
ponent model is the optimal choice. The same model is
selected when using the AIC or BIC approach.

3 | DATA AND ANALYSIS

The complete data set for our analysis is formulated from
the observed daily closing VIX data during the period 1
August 2005 through 31 December 2009. For a particular
plot, the x-value is taken as the VIXt0 (predictor) for

TABLE 1 Parameter estimates

PAR BIAS MSE

p1 �0.00010 0.00000

p2 0.00010 0.00000

b11 �0.04062 0.00165

b12 0.12039 0.01449

b21 �0.00003 0.00000

b22 0.00024 0.00000

r1 �0.78932 0.62303

r2 �0.18082 0.03269
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14 months and the corresponding y-value is taken as the
VIXT for the next month. Therefore, to construct each plot,
we use a data set consisting of 14 months. For example, in
the first subset of data, the x-values are VIXt0 during the
period 1 August 2005–31 August 2006. Corresponding
y-values are VIXT during the period 1 September 2005 to
30 September 2006. Thus, in order to incorporate the data
for a year, observations from 14 months are to be included.
For example in the present case, data for the period
1 August 2005–30 September 2006 are necessary. In par-
ticular, if the x-value is VIXt0 for 5 August 2005, its corre-
sponding y-value is VIXT for 5 September 2005. The data
for which no pairing is possible with the next month are
discarded.

It is clear from Equation (12) that, with respect to the
present model, the “jumps” in the log-return (J) are playing

a crucial role in determining the relation between VIXt0

and VIXT. The J term is governed by the L�evy subordina-
tor Z, which appears in the dynamics of the log-return
Equation (4). Thus, the fluctuation of the S & P 500 mar-
ket can be estimated from the analysis of of Equations (12)
and (13). Depending on the prominence and intensity of
the jump process, the mixture of linear regression model
would give various results for the previously described
VIX data set. However, as the model of such a data set is
given by Equation (12), we can extract important informa-
tion for the jump process (which are also “jumps” for the S
& P 500 market) from the different mixing proportions of
mixture of linear regression analysis. We analyze the data
set and show that an understanding of the nature of jumps
for this model using mixture of linear regression can be
used to obtain a premonition of big market fluctuation—
such as the S & P 500 crash on 16 September 2008.

3.1 | Classification of S & P 500 market
behavior

In this section, we implement the results from mixture of
linear regression for the VIX data to analyze the S & P 500
market. We list a set of rules followed by explanations and
examples. For the following analysis, K is the optimal num-
ber of components for mixture. Let pij, 1� i�K, 1� j� i
be the probabilities of proportions of mixture corresponding
to the number of components i (that may or may not be
optimal). Also assume that for a given i, if j0 < j″, then
pij0 ≥ pij″. We denote the present set of data (14 months) by
P and immediate past set of 14 months data by Pp. Also,
for the rest of the paper, we label a 14-month data period
by the first month. For example the period 1 August 2005–
30 September 2006 will be denoted as “August 2005.”
Also, in the following when we say “no significant fluctua-
tion in the next month,” we mean that the S & P 500 fol-
lows more or less the same trend in the following month.

Based on empirical observations, we classify the market
fluctuation in the following four cases. We also provide the
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FIGURE 1 1-component vs 2-component model for VIX2:
August 2005–August 2006

K=1 vs K=2

0 20 40 60 80 100

0
5

10
15

20
25

K=2 vs K=3

0 20 40

40
30

20
10

60 80 100

0

(a) (b)

FIGURE 2 Bootstrapping results of
the LRTS: left figure shows K = 1 vs
K = 2; right figure shows K = 2 vs K = 3.
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expected market behavior for the upcoming month based
on empirical observations. Later in this section, we develop
a quantitative way of characterizing the following cases.

1. Case I. For P, K = 2, p21 ≤ 0.75: No significant fluctua-
tion in the S & P 500 during the last 14 months. For the
next month, the S & P 500 should not have any big fluc-
tuation. Also, in this case, as p21 approaches 0.75, there is
more fluctuation at the end of P and more possibility of
big jumps for the S & P 500 during next month.

Examples of such a case are as follows: August 2005,
September 2005, October 2005, November 2005, Jan-
uary 2006, February 2006, March 2006, February 2007,
March 2007, April 2007, May 2007. An example of an
historical chart (with data from yahoo finance) for the S
& P 500 for Case I is provided in Figure 3.

2. Case II. For P, K = 2, p21 > 0.75: Significant fluctua-
tion in the S & P 500 during the last 14 months or no
fluctuation at all. For the next month, the S & P 500
should have a very big fluctuation. The larger the value
of p21, the more the risk of market crash during the next
month.

Examples of such a case are as follows: June 2007, July
2007, August 2007, September 2007. Case II example
of historical data for S & P 500 data is provided in
Figure 4.

3. Case III. For P, K ≥ 3, p21 ≤ 0.70

• Case III.A. If p31 ≥ 0.45: If for Pp, K = 2, then big
fluctuation in the S & P 500 at the end part of P. Such
big fluctuation is expected to continue for the next

month. If for Pp, K ≥ 3, then significant fluctuation in
the S &P 500 at some parts of P. However, for the next
month the fluctuations are expected to be stabilized. In
both of these cases, the greater the value of K, the more
the fluctuation for the S & P 500 during the next month.

Examples of such a case are as follows: December
2005, April 2006, May 2006, August 2006, September
2006, October 2006, November 2006, February 2008,
March 2008, April 2008, May 2008, June 2008, July
2008, September 2008, October 2008, November 2008.
An example of an historical chart (with data from yahoo
finance) for S & P 500 for Case III. A. is provided in
Figure 5.

• Case III.B. If p31 < 0.45: Good fluctuation of S & P
500 at some parts of P. However, for the next month
the S & P 500 is expected to be stabilized in terms of
fluctuation. The greater the value of K, the more the sta-
bilization of the S & P 500 during the next month.

Examples of such a case are as follows: December
2006, January 2007, December 2007, January 2008,
August 2008. An example of Case III.B. with historical
S & P 500 data is provided in Figure 6.

4. Case IV. For P, K ≥ 3, p21 > 0.70: Some very signifi-
cant fluctuation in S & P 500 is initiated at the end of
14-month historical data and is expected to continue
during the next month. The more the value of K, the
more the fluctuation for the S & P 500 during the next
month. However, this type of jump is a little less in
intensity than the one described in Case II.

Examples of such a case are as follows: June 2006,
July 2006, October 2007, November 2007. An example

12
00

13
50

Oct 1, 2005 − Nov 30, 2006

V
IX

30−Sep−05 17−Jan−06 2−May−06 15−Aug−06 30−Nov−06

12
00

13
50

Nov 1, 2005 − Dec 31, 2006

V
IX

1−Nov−05 16−Feb−06 2−Jun−06 15−Sep−06 29−Dec−06

FIGURE 3 October 2005–November 2006 (top), November
2005–December 2006 (bottom)

12
50

14
50

Jul 1, 2007 − Aug 31, 2008

V
IX

2−Jul−07 15−Oct−07 30−Jan−08 14−May−08 29−Aug−08

11
00

14
00

Aug 1, 2007 − Sep 30, 2008

V
IX

1−Aug−07 13−Nov−07 29−Feb−08 13−Jun−08 30−Sep−08

FIGURE 4 July 2007–August 2008 (top), August 2008–
September 2008 (bottom)

8 | MILJKOVIC AND SENGUPTA



of historical S & P 500 data for Case IV is provided
in Figure 7.
We analyze the above rules heuristically with the help

of Equation (12). In the following discussion, “more/less
uniformity” means “less/more outliers.” It is clear from the
nature of the jump process J that it spikes and then des-
cends exponentially. In the presence of reasonably uni-
form-sized jumps, the splitting of linear mixture of
regressions is thus uniform with no “major” mixing propor-
tion. This corresponds to Case I where the S & P 500
index is well behaved. On the other hand, K ≥ 3 and
p31 < 0.45 imply more optimal number of components for
regression model with uniform proportions. Consequently,
it signifies higher numbers of possible clustering of jump
sizes. However, this does not mean the presence of signifi-
cant outliers and the S & P 500 is well behaved in this
case as well. This situation corresponds to Case III.B.
When K ≥ 3 and p31 ≥ 0.45, this suggests the possibility
of some outliers. That means in this case some nonuniform

jump is initiated (or occurred at some point). This corre-
sponds to Case III.A.

The major cases with jumps correspond to Case IV and
Case II. For Case IV, p21 > 0.70, a large number of out-
liers are present in the S & P 500. However, since K ≥ 3,
such outliers have some uniformity. In other words, the S
& P 500 index has nonuniform jumps and that gives rise
to the possibility of significant S & P 500 fluctuation for
the future month. However, that fluctuation is not as bad
as the “crash” for the case when K = 2, that is, the situa-
tion corresponding to Case II. In Case II, the outliers are
significant, but that does not have any good uniformity yet.
This situation corresponds to the fact that in the next
month this will start building a pattern—in other words,
the market will be very volatile. This case may signify a
“crash” in the S & P 500 market.

We note that the S & P 500 crash in September 2008 is
correctly predicted by the analysis above. The data set July
2007 (which takes into account the data from 07/01/2007 to
08/31/2008) shows Case II behavior, which is a premonition
of a crash. Also the start of the housing market crash in
August 2007 affected the S & P 500 (though not as badly as
September 2008). The data set June 2006 (which takes into
account the data from 06/01/2006 to 07/31/2007) shows a
Case IV behavior, which correctly captures that situation.

We comment that the estimates of p21 or p31 described
above are based on empirical observations. However, we can
provide a heuristic explanation based on Equations (12) and
(13). As described in Section 1, the autocorrelation function
for the instantaneous volatility at time-lag h is given by exp
(�k|h|). Therefore, from the model it is clear that for suffi-
ciently small values of h the volatility of log-return of S & P
500 prices is correlated. This gives a short-term persistence
of volatility and, consequently, for the VIX index.

For Case I, it is clear there are not many outliers. In this
case, the jumps (J) are more or less evenly distributed and,
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therefore, the S & P 500 is stable. Also, due to the short-
term persistence in VIX, it can be concluded that no big
fluctuation for the S & P 500 will occur for the next
month. Case III.B gives a “splitting effect” for one of the
two proportions of Case I. Thus, Case III.B has less unifor-
mity in J than Case I, and consequently, the market is
more volatile in the former case. On the other hand, for
Case II, there are two possibilities—(i) almost uniformity
of jumps, or (ii) a few big outliers are initiated at the end
(which means they have no time to form a significant pat-
tern even due to “tail-off” effect of J). In the case (i), since
no big jump appeared for the last 14 months, it is highly
probable from the model that a big jump is going to occur
during the next month. For (ii), due to the persistence of
VIX, it is clear that big jumps will occur during the next
month. Case IV is the case where there is some “splitting
effect” for proportions of Case II. This gives some unifor-
mity in J, which makes it a little more predictable than
Case II. Finally, in terms of the structure of J, Case III.A
is between Case III.B and Case IV—it has more uniformity
of J than Case IV and less uniformity of J than Case III.B.
Thus, Case III.A is more predictable compared to Case IV,
but less predictable compared to Case III.B. Note that, in
all of the above explanation, we use a systematic way of
identifying the uniformity/nonuniformity of J and use
short-term persistence of volatility to forecast the pattern of
J for the upcoming month.

We note that for the BN–S model, jumps of the S & P
500 are governed by the same J (up to some constant) as
described before. Therefore, this analysis gives a premoni-
tion of big jumps for the upcoming month. The above anal-
ysis gives interesting results that cannot be obtained just by
looking at the VIX index. For example, the VIX data for
the periods 06/01/2006-07/31/2007 or 07/01/2007–08/31/
2008 are more or less uniform with no significant sign that
may lead to forecast a near future crash. However, that fol-
lows from the above analysis.

3.2 | “Indicator” for L�evy density

In this section, based on empirical observation, we propose
the following “indicator” for the L�evy density of the gov-
erning subordinator Z.

We denote

Atan2ðy; xÞ ¼

arctanðyxÞ; if x[ 0
arctanðyxÞ þ p; if x\0 and y� 0
arctanðyxÞ � p; if x\0 and y\0
p
2 ; if x ¼ 0 and y[ 0
� p

2 ; if x ¼ 0 and y\0
undefined; if x ¼ 0 and y ¼ 0:

8>>>>>><
>>>>>>:

We denote K opt to be the optimal number of compo-
nents for the mixture. Also we assume K opt ≤ N, for some

integer N > 0. Let 0\e\0:01 be a fixed small number.
We define the “indicator” as follows:

F¼
4p21
3 þb4p213 c��; Kopt¼2;

1þKopt
N

1
2� 1

2pAtan2 0:7�p21;p31�0:45ð Þ
 �
; Kopt�3;

(

where bxc denotes the floor of x. With appropriate choice
of e, the indicator satisfies: F < 1 for Case I; 1�F\2 for
Case III.A, Case III.B, and Case IV; and F ≥ 2 for Case II.
For any empirical purpose, it is sufficient to take e = .001
and N = 4.

Cases III.A, III.B, and IV can also be distinguished by
the values of F. For example, for K opt = 4, F 2 [1, 1.25]
represents Case III.B, F 2 (1.25, 1.5] represents Case
III.A, and F 2 (1.5, 2) represents Case IV. On the other
hand, if K opt = 3, F 2 ½1; 1916� represents Case III.B,
F 2 ð1916 ; 118 � represents Case III.A, and F 2 ð118 ; 74Þ represents
Case IV.

Examples of F-values (rounded) for Case I, II, III.A,
III.B, and IV are provided in Tables 2, 3, 4, 5, and 6,
respectively.

To connect this indicator F with the model described in
Section 1, we take examples of well-known subordinators.
It is clear from the above analysis that, for forecasting pur-
poses, the L�evy density of Zt must be an increasing function
of the indicator F. It is well known that inverse Gaussian
(IG) distributions and variance gamma distributions are self-
decomposable, and it is shown in Nicolato and Venardos
(2003) that, for BN–S model, if the stationary distribution
of r2

t is given by IG (d, c) law, then the L�evy density of Zt
is given by wðxÞ ¼ d

2
ffiffiffiffi
2p
p x�

3
2ð1þ c2xÞe�1

2c
2x, x > 0. Thus,

d = F may be taken and the calibration of data may be
obtained with the other parameter c. This will correspond to
jump modeling based on empirical observation. Similarly, if
the stationary distribution of r2

t is given by gamma law
Γ(m, a), then the L�evy density of Zt is given by w

TABLE 2 Examples of F-values (rounded) for Case I

F-value Time period

0.812 August 2005

0.812 September 2005

0.932 October 2005

0.946 November 2005

0.906 January 2006

0.852 February 2006

0.826 March 2006

0.972 February 2007

0.746 March 2007

0.759 April 2007

0.906 May 2007
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(x) = mae�ax, x > 0. Thus, m = F may be taken, and the cal-
ibration of data may be obtained with the other parameter
a. This will also correspond to jump modeling based on

empirical observation. This procedure gives a novel
approach for constructing an indicator (F) of non-Gaussian
jump (J) of an empirical data set using mixture of regres-
sion (Gaussian) analysis.

4 | CONCLUSION

This paper incorporates knowledge of mixture of regression
modeling for the VIX index in analyzing and forecasting
jumps in S & P 500 prices modeled by the BN–S stochas-
tic model. Four cases of jumps are examined as predictors
of the S & P 500 fluctuations for the short-term forecast
during the period 1 August 2005 to 31 December 2009,
using 14-month observed period data. All of the cases are
based on the mixing proportions estimated for the optimal
K-component linear regression model. We find that the
way VIX prices cluster can tell us about the fluctuations
and behavior of the S & P 500 market. We also find that
the VIX2 prices can rarely be described using a single-com-
ponent regression model as they show tendency of
clustering.

When we observe more uniform partitions in the 2-com-
ponent mixture model for VIX prices, jumps are more uni-
form and they are expected to continue in the next month.
In the case of a bigger gap between partitions in the
2-component model, there is an indication of greater fluctu-
ations toward the end of the observed period, which leads
to a higher probability of having big jumps in the next
month. This situation was confirmed for the period June
2007–September 2007 when a big market crash occurred.
In cases where more than a 2-component regression model
is found optimal, we set the rules for analyzing VIX data
and predicting jumps in market fluctuations.

Our results have implications in calculations of short-
time horizon Value-at-Risk (VaR) and Tail-Value-at-Risk
(TVaR). The VaR is known as a “key risk indicator” and
represents a quantile of the estimated profit-and-loss (P &
L) distribution for a portfolio of financial assets. The VaR
with a given probability level provides information to actu-
aries about “the chance of an adverse outcome” for a par-
ticular financial asset. On the other hand, TVaR provides
the average excess loss under adverse outcomes in cases
when the VaR quantile is exceeded. These adverse out-
comes are referred to as “bad times” and are often linked
to the performance of the stock market. Both VaR and
TVaR are considered forward-looking over a fixed short
time period (e.g., several days or a month) with a high
probability. If a portfolio contains holdings of the S & P
500 index, then VIX could be used directly in the calcula-
tion of VaR and TVaR. The findings of this research could
be used in forecasting short-term jumps in VIX prices,
resulting in more accurate risk evaluation of the underlying

TABLE 3 Examples of F-values (rounded) for Case II

F-value Time period

2.039 June 2007

2.331 July 2007

2.199 August 2007

2.146 September 2007

TABLE 4 Examples of F-values (rounded) for Case III.A

F-value Time period

1.243 December 2005

1.211 April 2006

1.292 May 2006

1.426 August 2006

1.400 September 2006

1.228 October 2006

1.196 November 2006

1.449 February 2008

1.243 March 2008

1.383 April 2008

1.336 May 2008

1.366 June 2008

1.275 July 2008

1.349 September 2008

1.330 October 2008

1.489 November 2008

TABLE 5 Examples of F-values (rounded) for Case III.B

F-value Time period

1.153 December 2006

1.151 January 2007

1.024 December 2007

1.153 January 2008

1.160 August 2008

TABLE 6 Examples of F-values (rounded) for Case IV

F-value Time period

1.602 June 2006

1.563 July 2006

1.415 October 2007

1.667 November 2007
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investment portfolio, as well as calculations of VaR and
TVaR measures.
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APPENDIX

ALGORITHMS

EM Algorithm

m 1

lold �Inf
{REPEAT Loop} M times

Select K-points at random (xj,yj), j = 1,. . .,K from n points.

Assume they represent centers of K groups.

Assign observations to these groups based on the smallest Euclidian
distance to a cluster center

Estimate hm
ð0Þ ¼ ðp1ð0Þ;p2ð0Þ; . . .;pK ð0Þ;b0ð0Þ;

b1
ð0Þ; . . .;bK

ð0Þ;r2
1
ð0Þ
;r2

2
ð0Þ
; . . .;r2

K
ð0ÞÞ>

Calculate lðhlð0ÞÞ
hopt  arg maxm¼1;...;M lðhmð0ÞÞ
lnew  lðhoptÞ
m m+1

end {REPEAT Loop}

s 1

WHILEðjðlnew � loldÞ=lnewj � epsÞ DO
lold lnew

{E-step}

Compute posterior probabilities pikðsÞfor i = 1,. . ., n and k = 1,
. . . K.

{M-Step}

Update hðsÞ ¼ ðpk ðsÞ;bk ðsÞ; rk2ðsÞÞ
(Continues)

EM Algorithm

Calculate l(h(s))

s s + 1

end WHILE

return h and lnew

Algorithm for Bootstrapping LRTS

l 1

{REPEAT loop}

For K = K0 under H0 compute log Lðĥ0Þ:
For K = Ka under Ha compute log Lðĥ1Þ:
Calculate Q ¼ �2ðlog Lðĥ0Þ � log Lðĥ1ÞÞ. This is likelihood ratio
test statistic (LRTS).

l l + 1

end {REPEAT Loop}

{FOR loop} N times

i 1

simulate data from K = K0 model

using the simulated data fit K-and (K + 1) component models

compute bootstrap LRTS, denoted as
QbootðiÞ ¼ �2ðlogLðĥKÞ � log LðĥKþ1ÞÞ
i i+1

end {FOR Loop}

compute the p-value as p ¼ 1
ðN�1Þ

PN
i¼1

IðQ�QbootðiÞÞ; I(.)is an
indicator function

return the p-value, Q, Qboot.

(Continued)
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