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Abstract

In this paper, we analyze the impact on overall mortality rates for the general US population
arising from climate change and the weather events resulting in property damages for the period
1968-2013. We develop a fixed effects panel data model for the impact of climate change on
property damage, with precipitation having a more pronounced effect than extreme temperatures.
Using the Dumitrescu-Hurlin panel data causality test, we found that property damages Granger
cause an increase in mortality rates for the middle age and old age population. Therefore, property
damage can further be used to improve the prediction of future mortality rates in the US. Our
findings are important for the insurance industry, which is currently seeking ways to incorporate
the impact of climate change. The industry is developing the Actuaries Climate Index and the
Actuaries Climate Risk Index which have the objective of informing the insurance industry about

the impact of extreme weather and its associated risks.

KEY WORDS: climate change, mortality, insurance, property damage, Dumitrescu-Hurlin causality

test.

1 Introduction and Literature Review

The link between potential and actual increases in extreme weather events and climate change has
long been established in the literature (Van Aalst, 2006; Schipper and Pelling, 2006; Hallegatte, 2014).
The insurance industry has a strong interest in understanding the impact of climate change on insured

exposures, for both people and property. For more than two decades, catastrophe modeling has been



extensively used by insurance and reinsurance companies to assess the impact of natural disasters and
provide input in pricing, reserving, underwriting, risk management, reinsurance decision-making,
portfolio optimization, and capital setting. Thus the mechanisms between climate change reflected
through an increase in frequency and likelihood of extreme events and property losses are already
modeled, and insurance policies account for the additional cost of natural disasters associated with
climate change. A related body of literature addresses the impacts of climate change that induced
catastrophic events on income levels and income distribution in affected areas (Masozera and Kerch-
ner, 2007; Miljkovic and Miljkovic, 2014; Fang et al., 2017).

In addition to property losses caused by natural catastrophes, the insurance industry has recog-
nized that human health, mortality, and morbidity are also linked to climate change. While direct
human losses related to natural disasters are measurable, indirect losses such as decline in health or
increase in morbidity are difficult to measure, thus leading most studies to focus on direct losses. The
idea behind this approach is based on the premise that good macroeconomic data would account for
both indirect and direct losses from significant disasters, so most of the studies focus on the impact
of disasters on macroeconomic variables.

Deschenes and Greenstone (2011) used a state-by-year fixed effects model to quantify the rela-
tionship between mortality and daily temperatures in the U.S. for the period from 1968-2002. Their
findings show that an additional day with a mean temperature exceeding 90°F leads to an increase in
the annual age-adjusted mortality rate of about 0.11 percent while an additional day with a mean tem-
perature below 20°F is associated with an increase in mortality of roughly 0.07-0.08 percent. Barreca
(2012) found that humidity and temperature are important determinants of mortality for the period
1973-2002. He projected that the distributional impact of mortality rates is likely to change in the
future, such as an increase in mortality for the hot areas and a decline in mortality in the cold areas of
the US.

Patz et al. (2005) recognized two main impacts on health due to climate change, such as direct
heat-related mortality and morbidity and an indirect climate-related risk of infectious diseases. Direct
heat-related mortality is caused by the differences in extreme temperatures at the time of the year

(e.g. early summer) when people have not yet become accustomed to these temperature swings.



However, climate projections indicate that these extremes may become more prevalent especially in
mid-latitudes. The same authors indicated that heat-related mortality may increase in large cities and
urban areas with population growth creating an “urban heat island effect”.

Several studies focused on developing index insurance linked to climate change forecasts. Ko-
vacevic and Pflug (2011) analyzed the potential of insurance to escape a poverty trap. The relationship
between insurance and inputs used in production, such as fertilizer and pesticide application rates, for
both farm level insurance and index insurance was studied by Ramaswami (1993), Babcock and
Hennessy (1996), Chambers and Quiggin (2002), and Mahul (2001). These studies do not address
interactions between insurance, climate forecast and input decisions. Carriquiry and Osgood (2012)
closed this gap in their study of Index Insurance, Probabilistic Climate Forecasts, and Production.
The reinsurance industry has adopted a probabilistic seasonal climate forecast in pricing (Hellmuth
et al., 2006). Chang et al. (2011) discussed evaluation of catastrophe equity puts.

Recent efforts by North American actuarial organizations, including the Society of Actuaries, the
Casualty Actuarial Society, the American Academy of Actuaries, and Canadian Institute of Actuaries,
was raised to develop an Actuaries Climate Index (ACI) and an Actuaries Climate Risk Index (ACRI)
with the purpose to assist the insurance industry to quantify the effect of extreme weather and its
associated risks. The report by Curry et al. (2012) lay the foundation for the development of the
ACI and ACRI indexes as means of quantifying risk through the occurrence and frequency of climate
extremes over time. The ACI is calculated as an unweighted average of standardized weather-related
anomalies: temperature, precipitation, drought, wind, sea level, and soil moisture. The ACRI is based
on the historical correlations of economic losses, mortality, and injuries arising from weather-related
events.

The objective of this current paper is twofold. First, we test econometrically the direct impact of
climate variables on property damages using a very detailed and large data set. This part of the paper
not only adds to the existing body of literature already discussed, but provides more robustness due
to a very large cross-section, time-series data set. The second objective is derived from the first one.
Once the link between property damages and climate variables is confirmed, we econometrically

establish the causality between property damages and mortality rates, hence adding yet a different



dimension to the studies on the impact of climate change on mortality.

There is no research to date, to the best of our knowledge, that addresses the link between the
property damage due to catastrophic events caused by climate change and mortality rates. Anecdotal
stories about catastrophic weather events causing health stresses abound, but there is no published re-
search to that effect. Hence the question of interest in this article is: Is there a causal linkage between
property damage due catastrophes caused by climate change and mortality rates? The importance for
the insurance industry of being able to establish such a link is obvious as such information could be
used to predict mortality rates more accurately. If one is aware of the age-old issue of the relationship
between the concepts of correlation and causality, it is clear that establishing causality is a neces-
sary condition for credible prediction. This reasoning in economics goes back all the way to Stigler
(1952) influential textbook on price theory, where he writes: “The important purpose of a scientific
law is to permit prediction, and prediction is in turn sought because it permits control over phenom-
ena. That control requires prediction is self-evident, for unless one knows what ‘causes’ a particular
phenomenon, one cannot effect or prevent its occurrence.” Indeed, before more complex mortality
models and indices are developed with a multitude of interactions in multivariate settings, establish-
ing a causal relationship between climate-induced weather catastrophes and their resulting property
damages and mortality rates is ultimately critical for predicting mortality rates more accurately.

This paper is organized as follows. In Section 2, we describe three big data sets used in this
project. In Section 3 we discuss the panel data fixed effects, unit root tests, and panel data causality
tests. The results are summarized in Section 4. Section 5 provides discussion of the findings and

implications to the insurance industry.

2 Data Sources

The Mortality Data files include 35.7 million records reflecting 79.7 million deaths in the United
States for period 1968-2013. The data for the period from 1999-2013 were provided by the Na-
tional Center for Health Statistics (National Center for Health Statistics, 1999-2013) with a signed
Data Use Agreement. The data for the period from 1989-1998 were provided by National Center for

Health Statistics (National Center for Health Statistics, 1989-1998) with a signed Data Use Agree-



ment. These two signed Data Use Agreements have been obtained separately. While the data for
the period 1989-2013 require a signed Data Use Agreement, the previous years data on death and
population records are publicly available at the USA National Center for Health Statistics web site.
Based on information available in the Compressed Mortality Files (CMF), mortality rates were
calculated, due to all-causes of deaths, for the time period 1968-2013, by county, state, and age
groups 0-1, 1-44, 44-65, 65+. The aggregation of the mortality data by age group is consistent with
the previous research done by Deschenes and Greenstone (2011) who used the mortality data for
the period 1968-2002. The CMEF reports death counts by race (White, Black, and other races), sex,
age group, county of residence, cause of death (4-digit International Classification of Diseases code),
and year of death. Additionally, the CMF files include population totals for four age groups, which
we used to calculate all-cause mortality rates. Figure 1 displays the time series of mortality rates
for adults 65+ for each US state from 1968-2013. The series from the states are grouped regionally
and overlaid with a locally weighted scatterplot smoother (LOWESS), often referred to as a locally
weighted smoother (LOESS) to emphasize regional trends (Cleveland, 1979). The downward trend
is a reflection of an increase in longevity in the US population aged 65+ during this period, with a
larger number of people constantly entering this group relative to those leaving it due to death. The
previous research established that this age group is the most vulnerable when it comes to climate
change impacts (Conti et al., 2007, 2005; Worfolk, 2000). Figure 2 represents the change in mortality
rate in the US over time for the same age group. Property Losses Data has been provided by the
Hazard & Vulnerability and Research Institute at the University of South Carolina. The Special
Hazard Events and Losses Database for the United States (Hazards & Vulnerability Research Institute,
2015) provides county-level hazard loss data for the period 1960-2014 related to 18 different natural
hazard events such as: thunderstorm, hurricanes, floods, wildfires, tornadoes, etc. Property losses
are presented in constant 2014 US dollars. For an exact event, the database includes the event date,
location (county and state), property losses, crop losses, count of injuries, and fatalities that affected
each county. The total number of records included in (Hazards & Vulnerability Research Institute,
2015) is 857,318. Property losses include property damage to buildings of any type, i.e., residential,

commercial, and public. These losses are all direct losses and do not include losses due to, for
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Figure 1: Time series of state mortality rates for adults 65+ from 1968-2013, grouped by region with
LOESS smoothers overlaid to emphasize trend.

example, business interruption. Figure 5 shows the time series of the log of average property damage
per capita by state overlaid by a bold smoother to highlight the general trend.

The climate data was taken from the Global Historical Climatology Network (GHCN)-daily
weather database provided by the National Oceanic and Atmospheric Association (National Cen-
ters for Environmental Information, 2015). This data provides daily summary statistics on weather
events from weather stations around the world. With our goal to analyze the relationship between
mortality, losses, and climate on the annual county-level within the United State, it was necessary to
restructure and augment the daily weather data to serve this purpose. On a high level, this involved
two main stages (1) gathering, cleaning and combining the necessary information on all US counties

and US-based weather stations, then (2) aggregating daily measurements from multiple stations into
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Figure 2: Mortality map for ages 65+. Average mortality rates (in 100,000) are computed for the
periods: 1968-1982 (left), 1983-1997 (middle), 1998-2013 (right).

annual county-level metrics of climate that can be used in primary analysis. Two primary sources
for information on member stations contribute to the GHCN: the Enhanced Member Station History
Report (EMSHR) published by the National Centers for Environmental Information, and the GHCN
station data. By combining the station information using unique identification numbers assigned by
the GHCN we had access to the county where each station resides, the elevation and the longitude
and latitude location of operation. The county’s geographic centroid, obtained from the Gazetteer
data from the US Census Bureau, were also merged into the station data for the purpose of subse-
quent aggregations. With the characteristics of the weather stations prepared, we were then ready
to aggregate daily weather measurements into annual county-level climate metrics. In aggregating
weather values into annual county-level summary statistics, we first impose a filter to remove ob-
servations from any weather station that is outside the continental US or above 7000ft elevation as
they are considered to be outside the scope of the analysis. Next, daily county-level weighted aver-
ages for high temperature, low temperature, and precipitation are calculated using weights inversely
proportional to the distance of weather stations from county centroids. While daily weather patterns
are not likely to differ strongly in different areas in each county, the weighted averaging allows for
the aggregates to be more representative the weather experienced by the residents across the entire
county. It would be ideal to base the weights on the population density centriod of each county, but
human populations have dynamic inter and intra-county movement over time that changes faster than

our weather measurements are recorded. The geographic centriod provides a reasonable proxy for a
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Figure 3: Time series of state low temperatures by state from 1968-2013, with LOESS smoother
overlaid.
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Figure 4: Time series of state high temperatures by state from 1968-2013, with LOESS smoother
overlaid.



representative location where the county population will experience the daily weather.
Lastly, a number of annual county-level aggregations are constructed using these daily county-
level weather averages with a focus to create weather metrics that reflect extreme behaviors that may

impact mortality. For temperature, the extremes are captured using the 5t*, 10** and 20"

percentiles
of low temperature, and the 80", 90" and 95" percentiles for high temperature. In addition, ten
temperature bins are created to allocate the number of days per year according to the temperature
bins. These bins include: 0 — 10°F, 10 — 20°F, 20 — 30°F, 30 — 40°F, 40 — 50°F, 50 — 60°F, 60 — 70°F,
70 — 80°F, 80 — 90°F, 90+°F. Figure 3 shows the time series of low temperatures such as the 5%,
10", and 20*" percentiles by state, overlaid by a bold smoother to highlight the general trend. Figure 4
shows the time series of the 95", 90", and 80" percentiles of high temperatures by state. The plot
is overlaid with the yearly average for these statistics by state.

Similarly, precipitation data were aggregated into same range of quantiles as temperature data.

Ten bins are developed to allocate the precipitation data into different ranges. Additionally, standard

deviation and average precipitation by state, county, and year are calculated.

3 Methodology

3.1 Panel Data Fixed Effects Model

We develop the region-specific fixed effects model based on county data. As both mortality and
climate change phenomena evolve over time rather than have discrete changes in a particular year,
then the use of time trend in lieu of the time fixed affects is considered more appropriate. The general

form of this fixed effects model is presented below:
ln(PDrct) = Z ;i Treti + Z 5jPrctj +t+ v+ €ret
i J

where PD,.; is the property damage per capita in a specific region r, county c, in year ¢t. Here,
Tcti denotes number of days in temperature bin ¢, year ¢, county c, and region . Similarly, the
precipitation variable is denoted as P,..¢; and it represents number of days in 4 precipitation bin or

average precipitation variable as described in Section 2. Additionally, -y, and ¢ are cross-sectional
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Figure 5: Time series of state property damage per capita from 1968-2013, with LOESS smoother
overlaid.
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regional dummy variables and time trend respectively. Finally, the last term in the equation €.
represents the stochastic error term. In this model, a small number of counties that have not reported
any property damage are omitted from the analysis.

In order to compare models and check for the goodness of fit, the Akaike Information Criterion by
Akaike (1974), is used to select the best model. The results of the final selected models are presented

in Section 4.

3.2 Panel Data Unit Root Tests

The panel data cross-sectional time series analysis is a standard procedure to check for existence of
unit roots. This panel unit root testing emerged from the time series unit root testing. However,
contrary to time series testing of unit roots, in the panel data these unit root tests should consider
asymptotic behavior of the time series and cross-sectional dimensions. In general, for panel unit root

testing the following procedure is used:

Di
Ayit = piYit—1 + Z Ci Ay -1+ idi g+ €4
=1

where d; ; represents the deterministic (exogenous) component in the model, autoregressive co-
efficient p = 0 indicates that y process has a unit root for individual ¢, A denotes first difference
operator, while p < 0 process is stationary around the deterministic part. Furthermore, p; is the lag
order for the difference terms, «; is parameter associated with the exogenous component in the model
that is to be estimated, and ¢; ; is parameter associated with differenced y-series that is to be esti-
mated. Levin et al. (2002) proposed a panel unit root test known as Levin-Lin-Chu Test (LLC) that

considers the following hypotheses:
HO: each time series contains a unit root
H1: each time series is stationary

The null hypothesis is that time series for all cross-sectional units are non-stationary, while the alter-

native that all time series are stationary. The alternative hypothesis in this test suggests that p; are
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identical and negative.
Im et al. (2003) proposed another panel unit root test, known as IPS test, with a more general and
less restrictive alternative to allow to vary so that some individual unit root process is possible. For

this hypothesis test, it is suggested that:
HO: assumes all y; follows unit root process
H1: not all follows y; unit root process

The null hypothesis is that the time series for all cross-sectional units follow a unit root process, i.e.,
are not stationary, while the alternative hypothesis allows at least one time series to be stationary.

We apply these two unit root tests separately to property damage and mortality rate panel data.

3.3 Panel Data Granger Causality Tests

In panel data settings, least squares regressions can take a number of different forms, depending upon
assumptions made about the structure of the panel data. Since Granger (1969) Causality is computed
by running bivariate regressions, there are a number of different approaches to testing for Granger
(1969) Causality in a panel context. In general, the bivariate regressions in a panel data context take

the form:

Vit = Qo+ Q1¥it—1+ oo iYii—1 + BriTig—1+ o BLiTip— + €t

Tit = Y0, + V1,iTit—1 F - ViTip— T 01i¥it—1 + o 01iYii—1 + €y

where y and x denote two stationary variables, i.e., mortality rates and property damages in our
study, observed for ¢ cross-sectional dimensions (e.g., the county and state of residence) on ¢ periods.
The different forms of panel causality tests differ regarding the assumptions made about the ho-
mogeneity of the coefficients across cross-sections. There are two approaches to causality testing

in panels. The first is to treat the panel data as one large stacked set of data, and then perform the
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Granger (1969) Causality test in the standard way, with the exception of not letting data from one
cross-section enter the lagged values of data from the next cross-section. This method assumes that

all coefficients are the same across all cross-sections, i.€.:

Qi = 0 j, 0 = Q1 j,...,0; = 0,71,

Bii = Bijs--sBi = By, V1, J

Y0,i = V0,55 V1,0 = V1,553 V,i = ’Yl,j7V7:aj

51,1’ = (5173‘, ... ,(51’1‘ = 5l,j,Vi,j

A second approach adopted by Dumitrescu and Hurlin (2012) uses more generalized assumptions,

allowing all coefficients to be different across cross-sections:

Qo F Q0,00 F Qe 0 7 0, Vi, ]

/Bl,i 7é 51,j7 B 7/8l,i 7& Bl,jv\v/ivj

Y04i 7 V05> Vi 7 Vijs - Vi 7 Vig» Vi J

51,1’ 7& 51,j7 v 75l,i ;é 5l,j7\v/i7j

This test is calculated by running standard Granger Causality regressions for each cross-section

individually. The next step is to take the average of the test statistics, which is termed the W-bar
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statistic. They show that the standardized version of this statistic, appropriately weighted in unbal-
anced panels, follows a standard normal distribution. This is termed the Z-bar statistic. Dumitrescu
and Hurlin (2012) is the method/test used in this paper.

Just as in Granger (1969), the procedure to determine the existence of causality is to test for
significant effects of past values of x on the present value of y. The null hypothesis is therefore
defined as: HO : By; = ... = f5;; = 0,01, = ... = 6; = 0, V i which corresponds to the absence of
causality for all cross-sections in the panel. The test assumes there can be causality for some cross-
sections, but not necessarily for all. In other words, if the null hypothesis is rejected, there can be
causality for some cross-sections but not necessarily for all, while the null hypothesis is not rejected,

there is no causality in any cross-sections.

4 Results

4.1 Fixed Effects Model Results

Table 1 summarizes the results from the fixed-effects regression model between property damage
and climate variables to account for regional variations and time trend. Nine climate regions within
the contiguous United States are defined by the National Centers for Environmental Information and
are useful for putting current climate anomalies into a historical perspective (Karl and Koss, 1984).
These regions defined by state are as follows: Northwest (ID, OR,WA), Norther Rockies (MT, NE,
ND, SD, WY), West (CA,NV), Southwest (AZ, CO, NM, UT), South (AR, KS, LA, MS, OK, TX),
Southeast (AL, FL, GA, NC, SC, VA), Upper Midwest (IA, MI, MN, WI), Ohio Valley (IL, IN, KY,
MO, OH, TE, WV), and Northeast (CT, DE, ME, MD, MA, NH, NJ, NY, PA, RI, VT). Based on
Akaike (1974) criteria, the best model contains only extremely high and low temperature variables
and average precipitation as measures of climate change. The overall R? reported for this model is
91% indicating that the model fits very well.

The results in Table 1 show that climate variables have a significant impact on property damages.
The impact of precipitation is much higher than the impact of both high and low temperatures, given

the size of the coefficient estimate for the Average Precipitation variable. An increase of precipitation
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Table 1: Fixed-effects regression results between log of property damages
per capita and climate variables for period 1968-2013 and the age group 65+.

Variable Coefficient SE p-value
Intercept -10.67000 1.21100 < 2e-16%%%*
Northern Rockies ~ 1.35800  0.04970 < 2e-16%**
West 0.03007  0.06829 0.65965
Southwest 0.36610  0.05759 2.06e-10 ***
South 1.16300  0.04425 < 2e-16%**
Southeast -0.03652  0.04616 0.42891
Upper Midwest 0.42500  0.04917 < 2e-16%#*
Ohio Valley 0.02165  0.04469 0.62799
Northeast -0.15130  0.04937 0.00218 **
year 0.00543  0.00061 < 2e-16%%%*
TMEAN9 0.00804  0.00252 0.00143 **
TMEAN1 0.02255  0.00106 < 2e-16%%%*
avgPrcp 6.27800  0.19870 < 2e-16%**

Signif. codes: 0 **** 0.001 *** 0.01’* 0.05°” 0.1’ 1
Multiple R-squared: 0.91234, Adjusted R-squared: 0.90522 F-
statistic: 461.1 on 12 and 100171 DF, p-value: < 2.2e-16%**
AIC: 187079.2

Note: TMEANI1 and TMEANY variables represent the yearly counts of days with average temperatures in
Fahrenheit falling into the bins 10 — 20°F, 90+°F respectively. The avgPrcp variable represents the average
daily precipitation as measured in inches.

of an inch per sq. foot leads to an increase in average property damage by $528. That result is ex-
pected given the multiple ways in which precipitation can damage various structures, unlike extreme
temperature that takes a longer time to have a measurable effect.

The coefficients of regional dummies, relative to the Northwest are all positive, except for the
South East and Northeast where the coefficients are negative, but only the North East coefficient is
statistically significant. This can be explained by the fact that the Northwest region that serves as the
base region is known to have large annual precipitations and as well as extremely low temperatures
relative to the Northeast region. We also observed positive and statistically significant coefficients
associated with climate variables indicating low temperature in bin 10 — 20°F and high temperature
in bin 90 — 100°F. The variables corresponding to these low and high temperatures bins are denoted
as “TMEANTI1” and “TMEAN9”. Time trend (“year” variable) is positive, meaning that there is an

increase in property damage over time reflecting an increase in property values and the number of
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Table 2: Summary of panel unit root test: property damage by state, 1968-2013.

Levin, Lin & Chu Test
Null Hypothesis: assumes common unit root process

Stat p-value cross-section observations
-23.0517  0.0000 48 2112

Im, Pesaran and Shin Test
Null Hypothesis: assumes individual unit root process

Stat p-value cross-section observations
-21.9882  0.0000 48 2112

properties. An additional day of extreme temperatures in bin 90 — 100°F increases, on average,
property damage per capita by 0.8%, while an additional day of extremely low deprecates in bin
10 — 20°F increases property damage per capita by 2.3% on average, holding all other variables
constant. Based on Figure 3, however, we can see that global warming as a manifestation of climate
change led to an increase in the trend of the quantiles of the lowest temperatures, thus, moderating
an otherwise strong impact of extremely low temperatures on property damages. These results are
produced using estimation tools available in the open-source environment for statistical computing

and graphics R (R Core Team, 2016).

4.2 Unit Root and Granger Causality Tests Results for Old Age Population

Panel data-specific causality testing is conducted in EViews v.8. We apply both LLC and IPS unit root
tests separately to property damage and mortality rate panel data. We reiterate here what we stated in
the data section: we use mortality rate data for the segment of the population aged 65+ as it has already
been conclusively determined in the literature that they are the most vulnerable population group to
the impacts of climate change. Results of the panel unit root tests are presented for both series in
Table 2 and Table 3, respectively. Both tests reject the null hypothesis of a unit root at least at 5%
significance level; hence the series is stationary at levels. Results of the panel data Granger causality
Dumitrescu-Hurlin pairwise tests are presented in Table 4. Again, the Dumitrescu and Hurlin (2012)
test is a test of the Homogenous Non Causality (HNC) hypothesis. Under the null hypothesis, there

is no causal relationship for any of the units of the panel. As the null hypothesis of non-causality is
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Table 3: Summary of panel unit root test: mortality rates for the population aged 65+, by state,
1968-2013.

Levin, Lin & Chu Test
Null Hypothesis: assumes common unit root process

Stat p-value cross-section observations
-5.09807  0.0000 48 2112

Im, Pesaran and Shin Test
Null Hypothesis: assumes individual unit root process

Stat p-value cross-section observations
-2.23315  0.0128 48 2112

Table 4: Pairwise Dumitrescu-Hurlin panel causality tests for the population aged 65+.

Null Hypothesis:
Average property damage does not homogeneously cause average mortality rates
W-Stat  Zbar-Stat

1.67820 2.82174

p-value
0.0048

Null Hypothesis:

Average mortality rates do not homogeneously cause average property damage
W-Stat  Zbar-Stat

1.40816  1.60879

p-value
0.1077

17



rejected at a 1% significance level for the property damages not causing the mortality rates, we can
conclude that property damages Granger cause the mortality rates. Notice that the Granger causality
test is a statistical hypothesis test for determining whether the past values of one time series are useful

in forecasting another time series current (future) values; it is not a “true causality” test.

4.3 Unit Root and Granger Causality Tests Results for Subgroups of Old Age Popu-

lation

Mortality behaves considerably differently for the “young old” and for the “very old” (Waldron,
2007). In other words, mortality rates for different subgroups of the old age population, i.e., 65+, are
potentially influenced by various, often differing factors. To that effect, and to test the robustness of
our findings, we divided our 65+ age group into three subgroups: “young old” being in the interval
65-74, “intermediate old” being in the interval “75-84,” and “very old” being 85 and older.

First, panel unit-root tests are run for the average mortality rates for each of the subgroups. Results
of the panel unit root tests are presented in Table 5. Both the LLC and the IPS tests indicate, at better
than 1% significance level, that the series are stationary. Mortality rates across different age groups
are likely to exhibit changing means and/or trends over time. Wider the age group range considered,
more likely it will contain heterogeneous breaks in both the level and trend of the series. Hence, it
comes as no surprise that, while both the overall old age group and individual subgroups unit root test
results indicate stationarity at significance levels of 1%, the evidence of no unit root is even stronger
for more homogeneous, narrower ranges of three old age population subgroups. Please note that the
average property damages do not change, and the unit root test results reported previously still hold.
Next, the panel data Granger causality Dumitrescu-Hurlin pairwise tests are run for each subgroup,
and the results are provided in Table 6. Test results indicate (at 1% significance level) that average
property damages Granger cause average mortality rates for both “young old” and “intermediate old”
subgroups. Same does not hold true for the “very old subgroup.” These results not only reinforce the
results for the entire old age population, reported in previous section of the paper, but are interesting
in their own right. As mortality rates increase as we move from “young old” to “very old,” the

causes that impact them change as well. Therefore, relatively largest mortality rates in the “very old”
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Table 5: Summary of panel unit root test: mortality rates by state by old age subgroup, 1968-2013.

Levin, Lin & Chu Test
Null Hypothesis: assumes common unit root process

Subgroup Stat p-value cross-section observations
65-74 -23.7130  0.0000 48 2112
75-84 -23.4525  0.0000 48 2112

85+ -12.3621  0.0000 48 2112

Im, Pesaran and Shin Test
Null Hypothesis: assumes individual unit root process

Subgroup Stat p-value cross-section observations
65-74 -26.9026  0.0000 48 2112
75-84 -27.1905  0.0000 48 2112

85+ -17.7261  0.0000 48 2112

subgroup might be considered autonomous as the probability of dying for individuals in that subgroup
approaches certainty. Hence any exogenous individual cause or impact on mortality rate of the “very
old” population is likely to have relatively lesser impact than on other subgroups of the old age group.
The strongest causal relationship, based on Dumitrescu-Hurlin pairwise test results, between average
property damage and mortality rate of the ”young old” subgroup serves as further confirmation of this

line of reasoning.

4.4 Unit Root and Granger Causality Tests Results for Middle Age Population

We extend our analysis for the middle age population, i.e. group of 45-64 years of age. Middle age
population is fairly uniform when it comes to the mortality rate as well as its socio-economic status.
Hence, no further disaggregation of this data group is warranted. Panel unit root tests confirm, at
5% significance level, that series on mortality rate of middle age population is stationary (Table 7),
while data on property damages remains as before; thus, the series is stationary at levels. Dumitrescu-
Hurlin test indicates that property damages Granger cause and thus have an impact on mortality rates
of this age group too (Table 8). Panel data Dumitrescu-Hurlin Granger causality test was run the age
group 1-44, and could not be statistically confirmed for that age group 1-44. This result, however,

should be taken with a cautionary note. We recognize that this age group is very diverse in terms of
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Table 6: Pairwise Dumitrescu-Hurlin panel causality tests by old age subgroup.

Null Hypothesis:
Average property damage does not homogeneously cause average mortality rates
Subgroup  W-Stat  Zbar-Stat p-value
65-74 2.16269  4.99792 0.0000
75-84 1.81460  3.43439 0.0006
85+ 1.38747 1.51584 0.1296

Null Hypothesis:
Average mortality rates do not homogeneously cause average property damage

Subgroup  W-Stat  Zbar-Stat p-value
65-74 1.10352  0.24041 0.8100
75-84 0.74653 -1.36313 0.1728

85+ 1.28655 1.06253 0.2880

Table 7: Summary of panel unit root test: mortality rates by state for age 45-64, 1968-2013.

Levin, Lin & Chu Test
Null Hypothesis: assumes common unit root process

Stat p-value cross-section observations
-2.09169  0.0370 48 2112

Im, Pesaran and Shin Test
Null Hypothesis: assumes individual unit root process

Stat p-value cross-section observations
-2.05335  0.0200 48 2112

Table 8: Pairwise Dumitrescu-Hurlin panel causality tests for age 45-64.

Null Hypothesis:
Average property damage does not homogeneously cause average mortality rates
W-Stat  Zbar-Stat p-value
1.81821  3.45063 0.0006
Null Hypothesis:
Average mortality rates do not homogeneously cause average property damage
W-Stat  Zbar-Stat p-value
1.21459  0.73929 0.4597
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biological and socio-economic attributes that might impact mortality rates, and statistical tests might
be biased and thus misleading. Moreover, from life insurance standpoint, this age group is least likely
to participate in that market, especially younger segment (children, teenagers, young adolescents) of
that group. Thus, life insurance industry may not have same interest in these results given relatively
small market share of this age group. For that reason, we do not present these results in the paper.

However, these results are available, per readers’ request, from the authors.

S Discussion and Implications

The objectives of this paper are to confirm that climate change weather events significantly contribute
to property damages, which in turn impact mortality rates. Weather events that proxy climate change
are the extreme temperatures and average precipitation over time. The comprehensive climate vari-
ables data base is comprised of data collected from multiple weather stations in all U.S counties over
the period 1968-2013. Results of the fixed-effects panel data model reaffirm our knowledge about the
impact of climate change on property damages, with precipitations having a more pronounced effect
than the extreme temperatures. Property damages are found, in turn, to Granger cause mortality rates
in the U.S. during this same period.

The use of Granger causality test results should be applied with caution when considering more
complex multivariate models in trying to explain current and past behavior of the variable of interest,
as well as to predict the impact of various regressors on its future values. It is suggested that a
Bayesian viewpoint should be taken in interpreting the results of these causality tests (Granger, 1969).
What this means in the context of our problem is that a multivariate regression formulation about
factors impacting mortality rates in the US, for example, is to capture a period following the period
used to test for causality. Otherwise, one may end up in a situation where the presence of Granger
causality based on test results coincides with no correlation between the variables when multivariate
regression is estimated if only contemporaneous values of the regressors are considered. Moreover,
the issue of multicollinearity becomes critical in such situations, as it is often the case in a large and
complex model. Careful selection of regressors is necessary as some of them could be correlated to

a significant enough degree to deem estimated coefficients both inconsistent and inefficient. Thus
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variables selection, and in turn, model specification become critically important to ensure validity of
the estimated model.

The important takeaway from this paper is that property damages due to climate change-caused
natural hazards help predict mortality rates of old age and middle age population in the United States.
This result is not only important to the life insurance industry but to the property and casualty indus-
try too. The common factor in both cases is that climate change-induced hazards lead to property
damages which, in turn, Granger cause mortality rates. Thus it is possible to see how joint efforts
could help alleviate some of the pressures on human health and mortality rates by creating a port-
folio or umbrella of climate change-related policies. Incorporating property damages into mortality
rate models or indices in a statistically sound way is a challenging task and a topic for our further

research.
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