Towards the Realization of a DSML for Machine
Learning: A Baseball Analytics Use Case

Kaan Koseler and Matthew Stephan

Department of Computer Science and Software Engineering
Miami University
Oxford, OH, USA
Email: {koselekt , stephamd}@miamioh.edu

Abstract. Using machine learning (ML) for big data is challenging, re-
quiring specialized knowledge of the domain, learning algorithms, and
software engineering. To demonstrate the viability of model-driven en-
gineering in the ML domain we consider an ML use case of baseball
analytics by extending and applying an existing, but untested, ML do-
main specific modeling language (DSML). Additionally, we aim to make
ML software development more accessible and formalized, and help fa-
cilitate future research in this area. This paper describes our plan, initial
work, and anticipated contributions in extending, testing, and validating
this DSML, and implementing a code generation scheme that is targeted
at a binary classification baseball problem.

Keywords: Model driven engineering - Domain specific modeling lan-
guages - Machine Learning - Analytics - Baseball

1 Introduction

The growth of big data analytics and machine learning (ML) has introduced
several new challenges for software engineers. Due to the esoteric nature of the
field, it is difficult to find software engineers that can develop and maintain
applications incorporating machine learning techniques to analyze data [2] who
also have the requisite domain knowledge.

One approach proposed to address some of these challenges is to use domain
specific models for big data analysis using machine learning, such as the domain
specific modeling language (DSML) proposed by Brueker [1]. This language is a
proof of concept only, and yet to be realized in practice or tested. To that end,
and for the purpose of demonstrating the practicality and potential of apply-
ing model driven engineering (MDE) to ML, we plan on updating that DSML,
implementing its code generation, and applying it to a baseball analytics use
case. We choose baseball due to the discrete nature of its data, its popularity
and relatability, and the wealth of available data compiled over its long his-
tory. Also, ML techniques are increasingly being incorporated into baseball to
the point that each team now has analytics departments and millions of dollars
invested [4]. This paper summarizes our approach, including preliminary work,
and our expected deliverables.



2 Kaan Koseler, Matthew Stephan

2 Background Information

We provide background information, omitting background on model driven en-
gineering and domain specific modeling languages, assuming the reader has this
knowledge.

2.1 Machine Learning - Binary Classification

While there are many classes of ML problems, we focus on the one relevant
to our use case, Binary Classification. Binary classification is perhaps the best
understood problem in machine learning [6]. Given a set of observations in a
domain, X, and their target values, Y, as training data, determine the values Y
on the test data, where Y is a binary value that classifies the observations. In
general, the values of Y are referred to as either positive or negative.

2.2 Baseball Analytics - Pitch Prediction

We consider the important binary classification baseball domain problem of clas-
sifying pitches into fastball and non-fastball categories. This problem was first
explored by Ganeshapillai and Guttag [3]. They considered a large feature vec-
tor of pitcher-batter match up data and game state, and used that to predict
whether the next pitch thrown would be a fastball. They achieved an 18% im-
provement in prediction accuracy over a basic naive classifier. Their training
data was drawn from the 2008 MLB season and their test data was drawn from
the 2009 MLB season.

3 Related Work

A common tool for representing a ML model is a probabilistic graphical model
(PGM). These are visual representations comprised primarily of random vari-
ables, with factor graphs explicitly designating joint distributions. These are
helpful from a design perspective, but it is difficult to establish a one-to-one
correspondence between a PGM and its resulting code implementation. One of
the primary advantages of employing a model-driven approach is making this
correspondence more explicit.

The only DSML we discovered designed for modeling machine learning was
first proposed by Breuker [1]. They propose a DSML, which we omit for space,
to build ML models graphically rather than through code. There is no code gen-
eration scheme, but Breuker does lay out a skeleton consisting of three methods
within a single C# class using the Infer. NET C# library [7]. This library builds
ML models by having users define variables and connect them with factors,
allowing execution of a given inference algorithm.

4 Proposed Approach

We will update and validate Breuker’s DSML, and apply it to a real-world prob-
lem for the first time, including creation of a code generation scheme and model
instances. Our use case involves classifying baseball pitches into fastball and



Realization of a DSML for Machine Learning: A Baseball Analytics Use Case 3

non-fastball categories, which has been done in the past manually, achieving an
18% improvement over a naive classifier [3].

Figure 1 presents our simplified example model instance for classifying
pitches. It uses the ”count” to predict the pitch. The ”count” consists of the
current number of strikes and balls that have been accrued in the match up.
The factor node represents the relationship between the variables, and we are
interested in P(Fastball|Balls & Strikes). This factor, when using the Bayes
Point Machine method, produces an array of weights that will be used for infer-
ring the fastball distribution. In reality, we will include as many as 37 factors [3]
in our model instances.

ame - Type - Name-Balls
Strikes integer 9

Node-Observed Node-Observed
Variable Variable

Node - Factor
Node-Random
Variable
predict? =
true
Node-Observed
ame - Variable Type -
Fastball Boolean

Fig. 1. Basic example model instance conforming to Breuker’s DSML

Produces

Our example generated setup code from this model instance, shown under-
neath the labeled training data in Figure 2, begins by initialization of the vari-
ables containing the training data into arrays. Different model instances will
have different numbers of variables and different respective data types. In this
example, we have balls, strikes, and a boolean fastball variable. We initialize the
weight vector with an identity matrix that will later be used for inference. This
is followed by a call to the BayesPointMachine method, which uses the train-
ing data to calculate and update the inference weights. Both our example and
an actual generated system would make calls to a generated inference engine
for posterior weight distribution and predictions, such as the one shown in the
latter half of Figure 2.

We present an example of potentially generated code for our BayesPointMa-
chine method in Figure 3. It collects training data in one vector, xVector, and



4 Kaan Koseler, Matthew Stephan

calculates the dot product of the weights w and xVector for each data point,
storing it in the target vector, y.

// The labeled training data

double[] strikes = { 2, 1, 2, @, 1, @ };

double[] balls = { 3, 3, @, 2, 1, @ };

bool[] fastball = { true, false, true, true, false, false };

//create target vector and weight vector
VariableArray<bool> y = Variable.Observed(fastball).Named("y");
Variable<Vector> w = Variable.Random(new VectorGaussian(Vector.Zero(2),

PositiveDefiniteMatrix.Identity(2))).Named("w");

//Call the bayes point machine method
BayesPointMachine(strikes, balls, w, y);

//Create inference engine object and infer

//posterior distribution of weights

InferenceEngine engine = new Inferencekngine();
VectorGaussian wPosterior = engine,Infer<VectorGaussian>(w);
Console.WriteLine("Dist over w=\n" + wPosterior);

//Make predictions on test data

double[] strikesTest = { 2, 1, 2 };

double[] ballsTest = { 3, 2, @ };

variableArray<bool> ytest = variable.Array<bool>(new Range(strikesTest.Length)).Named("ytest");

BayesPointMachine(strikesTest, ballsTest, variable.Random(wPosterior).Named("w"), ytest);
Console.WritelLine("output=\n" + engine.Infer(ytest));

Fig. 2. Example Setup and Call to the BayesPointMachine Method, and Inference

public void BayesPointMachine(double[] strikes, double[] balls, variable<vector> w, VariableArray<bool> y)
{

// Create training data vector

Range j = y.Range;

Vector[] xVector = new Vector[balls.Length];

for (int i = @; i < xvector.Length; i++)

xvVector[i] = Vector.FromArray(strikes[i], balls[i]);
VariableArray<Vector> x = Variable.Observed(xvVector, j).Named("x");

// Bayes Point Machine, dot product of weights and feature vector
y[j] = variable.GaussianFromMmeanAndvariance(variable.InnerProduct(w, x[j]).Named("dotProduct™)) > e;

Fig. 3. Projected Generated Code for our Bayes Point Machine

4.1 Scope

Our work will not include a defined code generation scheme for the entirety of
Breuker’s DSML. The scope of our code generation is limited strictly to modeling
this binary classification problem and using a Bayes Point Machine created in
Infer. NET to make predictions. There also exists the possibility that Breuker’s
DSML syntax contains heretofore unknown errors or deficiencies. In that case,
a critical component of our approach will be to find and correct any of these
errors.



Realization of a DSML for Machine Learning: A Baseball Analytics Use Case 5

4.2 Evaluation and Anticipated Results

To evaluate our work and validate the DSML, we will use the same 37 features,
training data and test data that Ganeshapillai and Guttag used when developing
their solution through source code. We will then compare our results to theirs
by evaluating the percentage improvement over a naive classifier. We anticipate
comparable results to their 18% improvement. Any improvement less than 18%,
while not ideal, can be viewed as a trade off for gaining MDE benefits, including
automation and formalism [5]. Additionally, we will demonstrate the flexibil-
ity afforded in an ML MDE approach by developing multiple model instances,
generating systems that consider different combinations and subsets of the 37
features.

5 Project Deliverables

We anticipate making a number of contributions in this project:

1. Extended, and now validated, ML DSML

2. Instances of the DSML with different combinations of the 37 factors [3]

3. Code generation scheme for this binary classification problem using the In-
fer. NET library

4. Executable systems generated from our model instances

5. Results from running generated systems on training and test data, with an
evaluation of prediction accuracy

Acknowledgments

This work is supported by the Miami University Senate Committee on Faculty
Research (CFR) Faculty Research Grants Program.

References

1. Breuker, D.: Towards model-driven engineering for big data analytics—an ex-
ploratory analysis of domain-specific languages for machine learning. In: Hawaii
International Conference on System Sciences. pp. 758-767 (2014)

2. DelLine, R.: Research opportunities for the big data era of software engineering. In:
International Workshop on Big Data Software Engineering. pp. 26-29 (2015)

3. Ganeshapillai, G., Guttag, J.: Predicting the next pitch. In: Sloan Sports Analytics
Conference (2012)

4. Sawchik, T.: Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing
Streak. Macmillan (2015)

5. Schmidt, D.C.: Model-driven engineering. Computer 39(2), 25 (2006)

6. Smola, A., Vishwanathan, S.: Introduction to Machine Learning. Cambridge Uni-
versity Press (2008)

7. Wang, S.S., Wand, M.P.: Using Infer.NET for statistical analyses. The American
Statistician 65(2), 115-126 (2011)



