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ABSTRACT
Previously, amethodwas proposed for calculating a reconstructed coef-
ficient of determination in the case of right-censored regression using
the expectation–maximization (EM) algorithm. Thismeasure is assessed
via simulation study for the purpose of evaluating the utility of model
fit. Further, several reconstructed adjusted coefficients of determination
are proposed and compared via simulation study for the purpose of
model selection. The application of these proposed measures is illus-
trated on a real dataset.

1. Introduction

Right-censored regression assuming normally distributed errors is commonly used in eco-
nomics, social science applications, and environmental studies to investigate the relationship
between a dependent (or response) variable and one ormore independent (or predictor) vari-
ables. In this type of regression, the values of the dependent variable are allowed to be right-
censored. These models are known as TOBIT models, named after Tobin (1958), or censored
regression models. Assumptions of TOBIT models are that the censored dependent variable
is of Type I, implying that the censoring level is known in advance, the sample size is fixed,
and the number of censored observations is a random variable. In practice, when multiple
censoring levels are common, the estimation of the parameters in the right-censored regres-
sion can be obtained using the expectation-maximization (EM) algorithm (Miljkovic and
Barabanov, 2015). Early work on the least-square regression with censored data can be found
in the articles published by Miller (1976) and Miller and Halpern (1982). Good information
about censored data and their applications is provided in books by Kalbfleisch and Prentice
(2011), Klein and Moeschberger (2003), Breen (1996), and Le (1997).

The problem of assessing model fit in regression analysis is an old one. The coefficient of
determination,R2, is one of themost extensively usedmeasures of goodness of fit for ordinary
least-square (OLS) regressionmodels (Draper and Smith, 1998). There appears to be a general
consensus on the use of R2 in the case of a quantitative dependent variable (Menard 2000),
and as such, has become a standard part of the regression output produced by all statistical
software and packages. However, if data with censored responses are analyzed using these
tools and the censoring is ignored (i.e., censored responses are treated as uncensored), the
estimated regression coefficients as well as the R2 estimate will be biased and inconsistent.

CONTACT TatjanaMiljkovic miljkot@miamioh.edu Department of Statistics, Miami University, Oxford, OH , USA.

©  Taylor & Francis Group, LLC

https://doi.org/10.1080/03610918.2016.1255969
https://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2016.1255969&domain=pdf&date_stamp=2017-05-08
mailto:miljkot@miamioh.edu


2 T. MILJKOVIC ANDM. ORR

There is currently no consensus on how a correspondingmeasure of the strength of associ-
ation between the dependent variable and a set of predictors should be calculated in the case
of right-censored regression. However, numerous pseudo-R2 measures, analogs of OLS-R2,
have been proposed for measuring the goodness of fit for some common limited categorical
dependent variablemodels, such as logistic regressionmodels (see Tjur, 2012). Themost pop-
ular pseudo-R2 is one proposed by McFadden (1973), which is based on the ratio of the log-
likelihoods of the full model and the intercept-only model. The characteristics of pseudo-R2

and its interpretability are similar to that of OLS-R2 as the pseudo-R2 also measures the level
of improvement in the fit that the full model has over the intercept-only model; the higher
the value of the pseudo-R2, the more improvement the full model has over the intercept-only
model. Veall andZimmermann (1996) pointed out that these goodness-of-fitmeasures should
not be used in cases when the limited dependent variable is continuous since the McFadden’s
pseudo-R2 may result in a value greater than 1 when the values of the log-likelihood func-
tions have the opposite sign.Miljkovic andBarabanov (2015) proposed a reconstructedR2

c (p),
an OLS-R2 analog, that can be used in right-censored regression when the EM algorithm is
employed in parameter estimation. This measure of goodness of fit maintains the same prop-
erties as the OLS-R2; as such, its value does not go above 1 when the dependent variable is
continuous. However, because the main goal of Miljkovic and Barabanov (2015) was in esti-
mating themodel coefficient parameters, the performance of R2

c (p) in estimating OLS-R2 was
not evaluated.

For the OLS model, a degrees-of-freedom-adjusted R2 has been developed to provide a
penalty as the number of predictor variables increases. Similarly, an adjusted McFadden’s
pseudo-R2 has also been developed to adjust for the number of parameters and penalizemod-
els with a large number of predictors. Thesemeasures were developed to assist inmodel selec-
tion, that is, to determine which subset of independent variables are most useful in predicting
the dependent variable. Other likelihood-based measures of fit include Cox and Snell (1971)
and Uhler and Cragg (1971). For these two measures, no adjustments have been proposed to
take into account the number of predictors; therefore, they cannot be used for model selec-
tion. Statistical software such as Stata 14 (2015) and SAS include these four measures as part
of the TOBIT regression output.

While the reconstructed R2, R2
c (p), proposed by Miljkovic and Barabanov (2015), main-

tains many favorable characteristics of R2, it also increases as more predictors are added to the
model, regardless of whether the additional predictors are good at explaining the variation in
the responses, making R2

c (p) an unfavorable tool in model selection.
There are two objectives of this article, both of which will be assessed through simula-

tion. First, we will evaluate the performance of R2
c (p) in estimating OLS-R2 for right-censored

regression. Miljkovic and Barabanov (2015) showed, through simulation, that the estimated
regression coefficients obtained using the EM algorithm have small empirical bias, but no
simulations were done to evaluate R2

c (p). Second, motivated by McFadden’s adjusted pseudo
measures and R2

c (p), we will propose and compare multiple measures of adjusted coefficients
of determination for the purpose ofmodel selection for right-censored regression. All of these
measures attempt to balance model fit with model complexity.

This article is organized as follows. In Section 2,we provide the backgrounddevelopment of
R2
c (p) aswell as the newproposed formulas forRa2c (p), whichwe call “reconstructed” adjusted

coefficients of determination. Section 3 includes the simulation study to evaluate the perfor-
mance of R2

c (p) and the proposed Ra2c (p) measures. The proposed new measures are tested
on a real dataset in Section 4. Concluding remarks are given in Section 5.



COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 3

2. Methodology

Consider the traditional form of the multiple regression model:

y = Xβ + ε, (2.1)

where y = (y1, y2, . . . , yn) is the vector of responses, ε ∼ N(0, σ 2I) is the vector of error
terms, and β = (β0, β1, . . . , βp)

′ is the vector of unknown parameters. The matrix X of size
n × (p+ 1) is known as the design matrix and assumed to have rank equal to p+ 1 (full
column rank). Let ŷi denote the fitted (estimated) value of yi based on the vector of esti-
mated regression coefficients, β̂, and the values xi j of the matrix X (for j = 0, 1, . . . , p and
i = 1, 2, . . . , n). Furthermore, let ȳi denote the sample mean of yi. Then, the following for-
mula for the coefficient of determination, R2, appears throughout the literature:

R2 = 1 − unexplained variation
total variation

.

Now, consider the linear regression model where the response (depended variable) is
allowed to be right-censored. Assume y and z are n1- and n2-vectors of uncensored and cen-
sored observations, respectively; n = n1 + n2. Denote by z̃ the vector of unknown values,
which are censored in vector z, and let y∗ = (

y
z̃ ). The linear regression model now has the

form

y∗ = X∗β + ε,

where ε and β are the same as in (2.1), and X∗ is the design matrix partitioned into two parts,
X∗ = (

X1
X2

) corresponding to the uncensored (X1) and censored (X2) observations.
As proposed by Miljkovic and Barabanov (2015), the reconstructed coefficient of determi-

nation, R2
c (p), is derived from the idea of optimizing the following objective function, based

on the conditional expectation of the complete data log-likelihood given the observed values
and current parameter estimates:

J(β0, β1, . . . βp) = ‖y − X1β‖2 + ‖A − X2β‖2 + B − ‖A‖2, (2.2)

where

A = E(z̃ | z̃ > z, β, σ 2) = X2β + σ f
(
z − X2β

σ

)
, (2.3)

B = E(z̃
′
z̃ | z̃ > z, β, σ 2) = ‖X2β‖2 + σ (X2β + z)′ f

(
z − X2β

σ

)
+ n2σ 2, (2.4)

f (x) = ϕ(x)
�(−x) , ϕ(x) = 1√

2π e
− x2

2 , and �(−x) = ∫ −x
−∞ ϕ(s) ds. ‖ · ‖ in (2.2) and (2.4) above

represents the Euclidean norm of vectors. Finally, R2
c (p) is computed as

R2
c (p) = 1 − Jlin(p)/Jconst, (2.5)

where

Jlin(p) = minβ0,β1,...,βpJ(β0, β1, . . . , βp) (2.6)

and

Jconst = minβ0J(β0, 0, . . . , 0) = Jlin(0). (2.7)
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Here, the optimal value of the objective function J, if we use the whole design partitionmatrix
X∗ is defined as Jlin in (2.6), while the optimal value of the J function, if we use only the
first column of X∗, is denoted as the Jconst in (2.7). The idea behind building R2

c (p) is similar
to McFadden-R2 with the exception that the complete-data log-likelihood function is used
rather than the observed log-likelihood function. TheR2

c (p) is computed based on the “recon-
structed” values of censored points found by imputation. The proposed work can be easily
extended to other forms of censoring such as left censoring or interval censoring. For these
extensions, the first and secondmoments of the conditional expectation of censored data (2.3)
and (2.4) should be adjusted to reflect these new situations.

The R2
c (p) maintains many properties of a “good” R2 proposed by Kvalseth (1985). For

example: R2
c (p) is independent of the units of measurement (unitless), 0 ≤ R2

c (p) ≤ 1, and
the function R2

c (p) is non-decreasing with respect to p.
As previouslymentioned, it is inappropriate to useR2

c (p) formodel selection becauseR2
c (p)

increases as the number of predictors increases. We propose three adjustments to R2
c (p) and

two alternative coefficients of determination that use the likelihood function in order to take
into account the number of predictors so that the model fit and model complexity can be
balanced. For simplicity, we will refer to these proposedmeasures as “reconstructed” adjusted
coefficients of determination. The following formulas summarize these measures and discuss
the rationale for each. Their performance is evaluated through a simulation study discussed
in Section 3.

When a dataset contains all uncensored responses, the uncensored coefficient of determi-
nation, R2(p), is adjusted to account for the number of covariates in the model. The formula
for this adjustment is

Ra2(p) = 1 − (1 − R2)
n − 1

n − p− 1
, (2.8)

where n is the sample size and p is the number of covariates in the regression model.
We will first consider three adjustments to R2

c (p) similar to (2.8). The first adjustment is
equivalent to the uncensored coefficient of determination, but replacing R2 with R2

c (p):

Ra2n(p) = 1 − (1 − R2
c (p))

n − 1
n − p− 1

. (2.9)

The second adjustment excludes observations with censored data points from the sample
size due to the censoring of the response for these observations resulting in incomplete infor-
mation. Therefore, the number of observations with uncensored responses, n1, is used in the
reconstructed adjusted coefficient determination instead of the total sample size, n:

Ra2n1 (p) = 1 − (1 − R2
c (p))

n1 − 1
n1 − p− 1

. (2.10)

The third adjustment uses what we call the “effective” sample size, ne, in the formula for the
reconstructed adjusted coefficient of determination:

Ra2ne (p) = 1 − (1 − R2
c (p))

ne − 1
ne − p− 1

. (2.11)

The value of ne will fall between n1 and n and is determined by summing the weights com-
puted for each observation. The weight for an observation quantifies the amount of infor-
mation we have about the value of the response for that observation. Therefore, a weight of
one (the highest possible value for a weight) is given to each observation with an uncensored
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response because we have complete information about the value of the response. The weight
for a censored data point is computed using the formula

wi = �

(
zi − x′

iβ̂

s

)
, (2.12)

for i = 1, . . . , n2, where�(·) represents the cumulative density function of a standard normal
random variable, zi is the censoring value for the ith censored response, xi is the vector of
covariates for the ith censored response, β̂ is the vector of estimated parameter values, and
s is the estimate of σ . In this formula, β̂ and s are estimates of β and σ , respectively, for the
regression model with p covariates determined using the EM algorithm.

An assumption of the model in (2.1) is that yi ∼ N(x′
iβ, σ 2). Thus, the weight in (2.12) is

the estimated cumulative density function evaluated at the censoring level zi and has a value
between 0 and 1 for the ith censored observation. The higher the value of zi falls above the
line, the more information we have about the response value for the ith censored observation,
the higher value of wi.

The final two reconstructed adjusted coefficients of determination are related to McFad-
den’s approach to the adjusted pseudo-R2. Both measures use an estimate of the following log
likelihood function:

l(y, z|β, σ ) = −n1 log(2π)

2
− n1 log(σ 2)

2
− 1

2σ 2 (y − X1β)′(y − X1β)

+
n2∑
i=1

(
1 − �

(
zi − x′

iβ

σ

))
, (2.13)

where z = (z1, z2, . . . , zn2 )′. The first reconstructed adjusted coefficient of determination
similar to McFadden’s approach is

Ra2EM(p) = 1 − l(y, z|β̂, s) − (p+ 1)

l(y, z|β̂0, s0)
. (2.14)

In this formula, β̂ and s are estimates of β and σ , respectively, for the regression model with
p covariates determined by the EM algorithm. The values β̂0 and s0 are also estimated using
this EM algorithm but for the intercept-only model.

The final reconstructed adjusted coefficient of determination is

Ra2l (p) = 1 − l(y, z|β̂l, sl ) − (p+ 1)

l(y, z|β̂0,l, sl,0)
, (2.15)

where β̂l and sl are the estimates of β and σ determined by directly maximizing the log like-
lihood function for the regression model with p covariates given in (2.13) and where β̂0,l and
s0,l are the estimates that directly maximize the function in (2.13) but for the intercept-only
model.

The first three measures (Ra2n(p), Ra2n1 (p), and Ra2ne (p)) have properties similar to the
uncensored adjusted coefficient of determination, Ra2(p). Most notably, each of these mea-
sures will be less than R2

c (p) as long as the corresponding sample size used (n, n1, and ne,
respectively) is larger than p+ 1. Additionally, it is possible for one or all of these measure to
be negative if R2

c (p) is close to zero.
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The final two measures (Ra2EM(p) and Ra2l (p)) have properties similar to McFadden’s
adjusted pseudo-R2. Although these values are expected to be lower than the first three mea-
sures for many datasets, it is possible for Ra2EM(p) (or Ra2l (p)) to be greater than one if the
numerator of the fraction in (2.14) (or (2.15)) is positive and the denominator is negative. It is
also possible for both the numerator and denominator to be positive, resulting in a decrease in
the reconstructed adjusted coefficient of determination as the model fit improves (Veall and
Zimmermann, 1996). In such cases, the researcher should be aware of these limitations and
proceed with caution when considering the use of these measures.

The methodology developed in this article is implemented using the statistical computing
environment R (R Core Team, 2015). To determine the parameter estimates corresponding to
Ra2l (p), the optim function from the base package stats in R is used.

3. Simulation studies

First, we evaluate the performance of R2
c (p) for different sample size and percent of censoring.

The simulation study considers the regression model

y = 2 + X1 + X2 + ε,

where the value ofX1 from the ith observation is xi = i/n, i = 1, 2, . . . , n, and n is the sample
size. The value of X2 for the ith observation was a randomly selected value in the sequence
{i/n; i = 1, 2, . . . , n}. Thus, the variables X1 and X2 are uncorrelated and for this model β =
(2, 1, 1) and ε ∼ N(0, 0.52). Different simulation settings were then created by manipulating
the sample size, n = (600, 60), and the percentage of points censored, lc = (10%, 30%, 50%).
In each simulation setting, first, all the values of the dependent variable y are generated based
on the parameter vector β and the distribution of the error terms previously specified. Then,
two ordinal levels were created in a two-stage process based on the (1 − lc/2)th quantile of
the values of y. These ordinal levels were treated as censoring levels at which the observations
above these levels were trimmed. The ordinal nature of the dependent variable is designed to
mimic the way censored data are observed in practice, usually related to methodological lim-
itations or confidentiality reasons involved in the data collection (see McKelvey and Zavoina,
1975). For each simulation setting, 10,000 datasets were randomly generated, and the follow-
ing quantities were computed from each dataset:

� R2: The coefficient of determination calculated from the original simulated data before
trimming/censoring. This is the true value of R2 based on complete information in the
data.

� R2
c (2): The coefficient of determination after trimming that is computed based on the

reconstructed values of the censored observations.
� �R2−R2c (2)

R2 : The difference between R2 and R2
c (2) relative to R2.

The boxplot in Figure 1 shows the distribution of relative differences between R2 and R2
c (2)

for each combination of sample size and percent of censoring. The first setting corresponds
to a large sample size and small percent of censoring and it is clearly seen that the empirical
bias of the estimator R2

c (2) is negligible; however, the empirical bias slightly increases as the
percent of censoring increases for the same sample size. The same is observed with a small
sample size with larger magnitude of empirical bias and variability corresponding to a large
percent of censoring. Overall, from our selected simulation settings, we observe that the best
performance of R2

c (2) is achieved when sample size is 600 with 10% censoring while the most
variable results are observed for sample size 60 and 50% censoring.
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Figure . Results of the simulation study for R2c(p).

Four additional simulation studies were performed to evaluate the performance of Ra2n(p),
Ra2n1 (p), Ra

2
ne (p), Ra

2
EM(p), and Ra2l (p) in terms of model selection under different simula-

tion settings. In these studies, the model assumption of normally distributed error terms was
met. Similar to the previous simulation studies, the sample size (n = 600, 60) and percent-
age of points censored (10%, 30%, and 50%) were varied to create the different simulation
settings. Additionally, different magnitudes of the parameters in β values were used. Three
models were considered in these simulation studies: a model with 2 potential predictors of the
response variable, a model with 4 potential predictors of the response variable, and a model
with 8 potential predictors of the response variable. For eachmodel selectionmethod for each
simulation setting, the percentage of simulations in which the correct model was selected was
determined. Similarly to the previous simulation study already described, 10,000 datasetswere
randomly generated for each simulation setting.

The first simulation study involved the analysis of data simulation from the model

y = 2 + β1X1 + β2X2 + ε, (3.1)

in which β1 	= 0 and β2 = 0. The value of β1 = 0.5, 1, or 2 (depending on the simulation
setting). The value ofX1 for the ith observationwas x1i = i/n, i = 1, 2, . . . , n, and the value of
X2 for the ith observationwas a randomly selected value in the sequence {i/n; i = 1, 2, . . . , n}.
Thus, the variables X1 and X2 are uncorrelated. Finally, ε ∼ N(0, 0.52). Because β2 = 0, a
model selection criterion correctly selects a model if X1 is chosen as the sole predictor of the
response variable for the model.

The second and third simulation studies used data simulated from the model

y = 2 + β1X1 + β2X2 + β3X3 + β4X4 + ε.

The second simulation study simulated data from this model where β1 = β2 = 0.5, 1, or 2
(depending on the simulation setting) and β3 = β4 = 0. The values in X1 and X2 were simu-
lated using the samemethods as in the first simulation study. The values in X3 were simulated
using the same method employed to simulate the values in X2, making X3 uncorrelated with
the other three predictor variables. The ith value in X4 was drawn from an N(x1i, 0.152) dis-
tribution, resulting inX1 andX4 having an approximate correlation of 0.90. As with themodel
in (3.1), ε ∼ N(0, 0.52).
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Figure . Results of first simulation study comparing model selection for different reconstructed adjusted
coefficients of determination. The percentage of times each method resulted in the selection of the correct
model at each censoring level is presented ineachplot. The symbol for eachmethodare as follows:Ra2n(2)—
circle (O); Ra2n1 (2)—triangle (
); Ra2ne (2)—plus sign (+); Ra2EM(2)—cross (×); Ra2l (2)—diamond (�).

The third, simulation study simulated data in a similar fashion to the second simulation
study with the exception that β1 = 2β2.

For both the second and third simulation studies, because β3 = β4 = 0, a model selection
criterion correctly selects a model if X1 and X2 are chosen as the predictors of the response
variable.

In order to evaluate the performance of each method when there are a higher number of
potential predictors, a fourth, and final, simulation study simulated data from the model

y = 2 + β1X1 + β2X2 + β3X3 + β4X4 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 + ε,

where β1 = β2 = β3 = β4 = 1 or 2 with the remaining parameters equal to zero. The value
of X1 for the ith observation was x1i = 1/n, i = 1, 2, . . . , n. The values in X2 through X8 were
randomly selected from the sequence {i/n; i = 1, 2, . . . , n}. Because the first four parameter
values are non-zero, a model selection criterion that selects X1, X2, X3, and X4 as the true
predictors selects the correct model.

Figures 2 through 5 present the results of the simulation studies performed to evaluate the
different measures of the adjusted coefficient of determination in terms of model selection.

Figure 2 presents the results of the first simulation study. The top three plots in this figure,
corresponding to the simulation settings with n = 600, all have similar patterns. Ra2EM(2)
performs best, followed by Ra2l (2). Both of these measures decrease slightly in correct model
selection percentage as the censoring level increases. The method with the next best perfor-
mance is Ra2n1 (2), with a correct model selection percentage that increases as the censoring
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Figure . Results of second simulation study comparing model selection for different reconstructed
adjusted coefficients of determination. The percentage of times each method resulted in the selection
of the correct model at each censoring level is presented in each plot. The symbol for each method
are as follows: Ra2n(2)—circle (O); Ra2n1 (2)—triangle (
); Ra2ne (2)—plus sign (+); Ra2EM(2)—cross (×);

Ra2l (2)—diamond (�).

level increases. Ra2ne (2) performs fourth best (second worst) with a correct model selection
percentage that slightly increases as the censoring level increases. Finally,Ra2n(2) performs the
worst with a correctmodel selection percentage that decreases as the censoring level increases.

We see a similar pattern in the two rightmost bottom plots of Fig. 2. The one exception is
thatRa2n1 (2) outperformsRa2l (2) for the simulation settingwhen β1 = 1, n = 60, and the cen-
soring level is 50%. For the simulation settings with β1 = 0.5 and n = 60, represented by the
leftmost bottom plot, the correct model selection percentage is generally lower compared to
the simulation settings represented by the other five plots. However, the relative performance
among the five measures remains the same, with the exception of Ra2l (2), which is outper-
formed by both Ra2n1 (2) and Ra2EM(2) for the simulation setting with a 30% censoring level.
Ra2l (2) is also outperformed by all measures except Ra2n(2) for the simulation setting with a
50% censoring level.

Figure 3 shows the results of the second simulation study in which data were simulated
from a regression model with four predictors, two of which are true predictors with equal
coefficient parameters. Although the correctmodel selection percentages are lower than in the
first simulation study (see Figure 2), we see the same relative pattern in the performances of the
fivemeasures for the simulation settings with n = 600 as well as the settings with β1 = β2 = 2
and n = 60. Ra2EM(4) performs best, followed by Ra2l (4), Ra

2
n1 (4), Ra

2
ne (4), and finally Ra

2
n(4).

The plot presenting the results of the simulation settings with β1 = β2 = 1 and n = 60 also
has a similar pattern with the exception of the performance of Ra2l (4), which decreases more
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Figure . Results of third simulation study comparing model selection for different reconstructed adjusted
coefficients of determination. The percentage of times each method resulted in the selection of the cor-
rect model at each censoring level is presented in each plot. The symbol for each method are as fol-
lows: Ra2n(4)—circle (O); Ra2n1 (4)—triangle (
); Ra2ne (4)—plus sign (+); Ra2EM(4)—cross (×); Ra2l (4)—
diamond (�).

sharply as the censoring level increases compared to the other settings. The simulation settings
with β1 = β2 = 0.5 and n = 60 show the worst performance by far. Ra2n(4), Ra2n1 (4), Ra

2
ne (4),

andRa2EM(4) perform similarly, withRa2n1 (4) performingmarginally better andRa2l (4) clearly
performing the worst.

Figure 4 shows the results of the third simulation study in which data were simulated from
a regression model with four predictors, two of which are true predictors with the coefficient
parameter for one of these predictors twice the coefficient parameter of the other predictor.
The two rightmost upper plots, corresponding to the simulation settings with the two largest
parameter coefficient values and n = 600, and the rightmost lower plot, corresponding to
the simulation settings with the largest parameter coefficient values and n = 60, show similar
patterns to many of the plots in the previous figures. Ra2EM(4) performs the best, followed by
Ra2l (4), Ra

2
n1 (4), Ra

2
ne (4), and finally Ra2n(4). The leftmost upper plot, corresponding to the

simulation settings with the smallest parameter coefficient values and n = 600, shows a simi-
lar pattern, except that Ra2l (4) decreases more sharply than in the three plots previously men-
tioned. Similar to what we observed in Fig. 3, the leftmost bottom plot, corresponding to the
simulation settings with the smallest parameter coefficient values and n = 60, shows theworst
performance in model selection for all five measures. Ra2n1 (4), Ra

2
ne (4), and Ra2n(4) perform

similarly, followed by Ra2EM(4) and Ra2l (4). Finally, the middle bottom plot, corresponding to
β1 = 2β2 = 1 and n = 60, shows a different pattern. Ra2EM(4) and Ra2n1 (4) perform relatively
similarly, followed by Ra2ne (4), Ra

2
n(4), and finally Ra2l (4).
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Figure . Results of fourth simulation study comparingmodel selection for different reconstructed adjusted
coefficients of determination. The percentage of times each method resulted in the selection of the cor-
rect model at each censoring level is presented in each plot. The symbol for each method are as fol-
lows: Ra2n(4)—circle (O); Ra2n1 (4)—triangle (
); Ra2ne (4)—plus sign (+); Ra2EM(4)—cross (×); Ra2l (4)—
diamond (�).

Figure 5 shows the results of the final simulation study involving eight potential predic-
tors. The results of this study show the following general ranking of model selection criteria:
Ra2EM(8),Ra2l (8),Ra

2
n1 (8),Ra

2
ne (8), andRa

2
n(8). These results are similar towhat was observed

in the third simulation study in terms of relative performance of the measures.

4. Real data

We examine the veterans’ health benefits grants dataset for the years 2000 to 2010, provided
by the North Dakota Department of Veterans Affairs and first analyzed by Miljkovic and
Barabanov (2015). The dataset includes 575 applications with 48% of censored data. The
authors provide a thorough discussion about this dataset. The censored dependent variable, y,
under consideration, in the right-censored regression setting, is the amount of health benefit
paid to low income veterans which was capped at $750 in year 2006 and $1,000 in year 2010.
The independent variables under consideration are: application year (x1), age of the appli-
cant (x2), gender (x3), income level (x4), spousal status (x5), marital status (x6). We consider
the following models for which we compute Ra2(p) (ignoring censoring), Ra2n(p), Ra2n1 (p),
Ra2ne (p), Ra

2
EM(p), and Ra2l (p):

Model-1: E(y) = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6
Model-2: E(y) = β0 + β1x12 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6
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Figure . Optimal model selection. Top left is Ra2(OLS); top right is Ra2n(p); middle left is Ra2n1 (p); middle

right is Ra2ne(p); bottom left is Ra2EM(p); bottom right is Ra2l (p).

Model-3: E(y) = β0 + β1x12 + β2x2 + β3x3 + β4x4 + β5x6
Model-4: E(y) = β0 + β1x12 + β2x2 + β3x3 + β5x6
Model-5: E(y) = β0 + β1x12 + β2x3 + β5x6
Model-6: E(y) = β0 + β1x12 + β2x4 + β5x6
Model-7: E(y) = β0 + β1x12 + β5x6.
Figure 6 shows the summary of the results for these six measures used in the model selec-

tion. The optimalmodel isModel-5 according to Ra2n1 (p),Ra
2
ne (p),Ra

2
EM(p), andRa2l (p)with

the values 0.09588, 0.09853, 0.00854, and 0.00884, respectively.Model-4 is selected as the opti-
mal model when using Ra2ne (p). For this data, the maximum value of the adjusted coefficient
of determination is achieved when using Formula (2.11) that includes the penalty term based
on the effective sample size, ne. This result alone indicates that the goodness of fit for Model-5
is improved by 9.59% over the intercept model. Therefore, the same percent represents the
amount of variability explained when using this model.
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Miljkovic and Barabanov (2015) selected Model-5 based on the highest value of R2
c (p).

If censoring is ignored, the OLS-based adjusted coefficient of determination of 0.2541 is the
highest for Model-4. The model would not only be incorrectly selected using this criteria
but also the magnitude of the adjusted coefficient is more than twice higher compared to that
based on the EM algorithm.While we observe that the value of these results are low, Veall and
Zimmermann (1996) noted that for some type of applications R2 will be low. For example,
it is expected for a regression using microdata on labor supply to have an R2 of 0.1 while
a regression of macroecomometric variable using county data may have R2 of 0.4. Low R2

values are also observed in social and behavioral sciences. This phenomenon is explained by
that fact that due to the complexity of the problems studied in these areas, we do not expect
the models to include all relevant predictors to explain the response, many other variables
may not be accounted for in the model specification. In other fields of study where the R2

is higher, it is easier to specify complete and well-defined models. Examples of very low R2

values can be found in the study of intertemporal asset pricing by Shanken (1990). Further
discussion about R2 measure of explanatory power can be found in the book by Neter et al.
(1996).

5. Recommendations and conclusion

In this article, we evaluated the performance ofR2
c (p) in estimatingOLS-R2 for right-censored

regression, proposed byMiljkovic and Barabanov (2015). It was found that the overall perfor-
mance of R2

c (p) depends on the samples size and percent of censoring. A slight increase in the
empirical bias and noticeable increase in the variability is observed as the sample size tends
to decrease with an increase in the proportion of censored data. However, the R2

c (p) performs
well for a large sample size (e.g., n = 600) and small percent of censored data (e.g., 10%).

We also evaluated five proposed reconstructed adjusted coefficients of determination used
for model selection in right-censored regression. Based on the results of the simulation study,
we generally recommend the use of Ra2EM(p) for model selection as this measure performed
the best in the majority of the simulation settings among the five methods tested . However,
as already mentioned, there are limitations to Ra2EM(p). More specifically, this measure can
be greater than one if the numerator and denominator have opposing signs in the fraction
in (2.14) or this measure can decrease as the model fit improves if both the values of the
numerator and denominator in (2.14) are positive. Thus, the researcher must pay attention
to the value of the estimated likelihoods in (2.14) to verify that Ra2EM(p) is valid for a spe-
cific dataset. If the researcher decides not to use Ra2EM(p) for model selection, then Ra2n1 (p)
is recommended because it performed the best among the three measures that adjusted the
reconstructed coefficient of determination (Ra2n(p), Ra2n1 (p), and Ra

2
ne (p)) in the overwhelm-

ing majority of simulation settings.
We illustrated the performance of thesemeasures to a real dataset related to veterans’ bene-

fits. For this dataset the values of estimated likelihoods used in (2.14) and (2.15) are the same,
so the Ra2EM(p) is consistent with Ra2n1 (p) when used in the model selection. These results
are expected based on the findings from our simulations study, and they are in line with our
recommendations.

Also note, as already mentioned, that the proposed work can be easily extended to other
forms of censoring such as left censoring or interval censoring. For these extensions, the
first and second moment of the conditional expectation of censored data (2.3) and (2.4)
will need to be adjusted to reflect these new situations. However, all of the goodness-of-fit



14 T. MILJKOVIC ANDM. ORR

measures surveyed in this article would remain the same. While we recognize that some
applications of interval censoring and left censoring exist, we focused exclusively on right
censoring as we believe this situation occurs more often in the applications that we
considered in this article.
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