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A novel application of the expectation maximization (EM) algorithm is proposed for modeling right-
censored multiple regression. Parameter estimates, variability assessment, and model selection are
summarized in a multiple regression settings assuming a normal model. The performance of this method
is assessed through a simulation study. New formulas for measuring model utility and diagnostics are
derived based on the EM algorithm. They include reconstructed coefficient of determination and influence
diagnostics based on a one-step deletion method. A real data set, provided by North Dakota Department
of Veterans Affairs, is modeled using the proposed methodology. Empirical findings should be of benefit
to government policy-makers.
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AMS Subject Classification: 62N01; 62N02; 62J05

1. Background

According to the US Census Bureau [4], there were 22.5 million living veterans in the USA as of
2010, representing 7.3% of the total population. Veterans are eligible for a number of federal and
state benefit programs and services offered by the Department of Veterans Affairs (DVA) [29].
The uninsured rate of veterans decreased from 7.6% in 2000 to 7.2% in 2009 [4]. As federal and
state medical health benefits are available to eligible veterans, the number of veterans 18 years
and older using these programs increased from 50% in 2000 to 60% in 2009. The availability
of these programs is critical for veterans who live below the poverty level. Poverty rate among
veterans, defined as income below 100% of poverty threshold [5], has increased over the past
decade, and it was reported at 6.3% in 2009 compared with 5% in 2000 [26]. The Bureau of
Labor Statistics reported that in 2007, 11.8% of North Dakota’s (ND) population was living
below the poverty level. The national average for the same period was 13% [27].
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2 T. Miljkovic and N. Barabanov

State benefit programs for veterans vary from state to state. In the state of ND [19] working
under the supervision of the Administrative Committee of Veterans Affairs (ACOVA), admin-
isters various state benefit programs available to low-income veterans and their families. The
Hardship Grants Program provides aid to veterans for unmet medical needs and encompasses
medical benefits for the following categories: dental, denture, hearing, optical, and special. The
cost of this program is underwritten by the Veterans Post War Trust Fund (VPWTF). The State
Treasurer is the trustee of this fund, as provided for in the state constitution. This fund relies on
its investments in the financial market in order to grow and generate annual income for use in
grant programs that will benefit veterans. The ND DVA is responsible for the administration of
these programs. The policy and guidelines of these programs are set by the ACOVA whose board
is made up of veterans. In order to prudently manage the fund and budget Hardship Grants Pro-
gram, it is important to evaluate the medical benefit needs of veterans in ND so that appropriate
decisions are made at the state level to generate sufficient funds to pay eligible veterans and their
families in future years. This study provides statistical models and tools which can be applied
in the financial assessment of the medical benefit needs for veterans in ND and may be used in
any other US state where similar programs exist. Government and policy-makers may also be
interested in this study as they want to make decisions and provide sound investments for future
public policies.

2. Introduction

Censoring has been extensively discussed as a part of survival analysis and a large volume of
literature is generated in this area. Good information on these topics can be found in books by
Kalbfleisch and Prentice [10], Klein and Moeschberger [11], and Lee [12]. An observation is
right censored at a censoring point if when it is above the censoring point, it is recorded as being
equal to the censoring point, but when it is below or equal the censoring point, it is recorded
as its observed value. In medical statistics, right censoring is analyzed from the data of patients
who are still alive at the end of the study and those who terminated the study due to surrender
as stated by Miller [17]. Right censoring in the insurance industry was discussed by Guiahi [9].
Some policies are structured in such a way that the policy limits serve as a restricted amount of
payment on a given loss. For a loss below or equal to the policy limit, payment is made in the
amount equal to the loss. If the loss exceeds the policy limit, payment is imputed at the policy
limit.

Linear regression models are commonly used in many applications to analyze the functional
relationship between a response variable and other explanatory variables that are perceived to be
related to the response variable. Typically, a normal distribution is assumed for the underlying
assumption of the error structure. However, these models have limitations when the response
variable is right censored since they may yield fitted values of the variable of interest to exceed
its upper or lower bound when the censoring is ignored.

Tobit models [22] were popular for some time since they allowed for the response variable to
be latent (i.e. unobservable) in the regression settings (e.g. [6,8,21,23]). The observable response
variable is equal to the latent variable whenever the latent variable is above zero and zero other-
wise. The interpretation of the coefficient is not the same as that used in the ordinary regression.
For example, the interpretation may look at the change of the response variable of those above
the limit weighted by the corresponding probability of being above the limit [14]. Also basic
Tobit model uses one censoring level (threshold) that is constant across all observations. Some
critiques of the use of Tobit model were raised by Maddala [13]. He suggested that this method
is appropriate only when the bunching of the y values in a regression occurs because of some
exogenous mechanism (e.g. the way in which data were collected or recorded) and not in other
situations.
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Journal of Applied Statistics 3

Censored, sample-selected, or truncated data were summarized well in a book by Breen [3].
The book includes many examples of censored regressions which apply the concepts and relate
a reader to the applications in non-experimental social sciences. The book also emphasizes the
advantage of using the maximum likelihood approach in parameter estimation. Breen [3] makes
a note of caution that large sample size is important for the desirable properties of the estimators.
However, none of the methods presented in the book are based on the expectation maximization
(EM) algorithm.

Early studies on parametric methods for right-censored regression were dated in the 1970s. An
iterative procedure known as the EM Algorithm was proposed by Dempster et al. [7]. The EM
algorithm has been extensively used for missing data or data containing missing values. Good
information on the EM methodology and the applications can be found in the book published by
McLachlan and Krishnan [15]. More recent significant developments in using the EM algorithm
in right-censored modeling problem are presented in papers by Wei and Tanner [24] and Ng
et al. [18].

Aitkin [1] analyzed data on electrical insulation in 40 motorettes tested at four different tem-
perature settings. The time until failure in hours of each motorette is recorded. Observations were
right censored if the motorettes were still on test without failure at the indicated time. Aitkin used
a simple linear regression model and showed that the parameter estimates for the same data (40
motorettes) can be obtained by maximum likelihood using the EM algorithm. In the E-step, cen-
sored observations were replaced with their conditional expectations given the observed data
and the current parameter estimates. Then, in the M -step, the new parameter estimates were
computed by the maximum likelihood method based on the complete data.

This article extends Aitkin’s idea and offers another application of the EM algorithm in
right-censored multiple regression settings by providing parameter estimates, variability assess-
ment, model selection, and measures of model utility and influence. A novel application of this
methodology is demonstrated on financial benefit data set provided by ND DVA.

The organization of this paper is as follows. Section 3 defines problem settings, parameter esti-
mates, variability assessment, and normality assumptions based on the EM algorithm. Section 4
introduces new formulas for measuring model utility and diagnostics based on one-step dele-
tion. Simulation study is provided with parameter estimates and model validation in Section 5.
Section 6 includes the analysis and discussion of the ND DVA data incorporating methodology
presented in this article. Concluding remarks are given in Section 7.

3. Right-censored regression

3.1 Problem Setting

Consider the traditional form of the multiple regression model:

y = Xβ + ε,

where ε ∼ N(0, Iσ 2) and β = (β0,β1, . . . ,βp)
′ is a vector of unknown parameters. The matrix,

referred to as the design matrix, X is of size n × (p + 1) and is assumed to have rank equal to
p + 1 (full column rank). The goal of traditional multiple regression is to estimate the param-
eter vector ψ = (β0,β1, . . . ,βp, σ 2)′. This can be accomplished through the minimization of a
suitable cost functional, for example, by the least-squares method, which minimizes the sum of
squares of deviations for the n observed responses, yi , from their fitted values, (ŷi).

Now, consider the linear regression model with censored observations. Assume y and z are n1-
and n2-vectors of uncensored and censored observations, respectively; n = n1 + n2. Denote by
z̃ the vector of unknown values which are censored to vector z. Denote by y∗ = ( y

z̃

)
. The linear
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4 T. Miljkovic and N. Barabanov

regression model has a form

y∗ = X∗β + ε,

where ε ∼ N(0, Iσ 2) and X∗ is a design matrix. Then, X∗ may be partitioned into two parts:
X∗ = ( X1

X2

)
corresponding to the uncensored and censored observations. As above the goal is to

get values of the set of parameters ψ = (β0,β1, . . . ,βp, σ 2)′.

3.2 Expectation maximization method

We can use the EM method when we have two sets of unknown quantities: parameters of model
(like coefficients of regression model and variation of additive noise) and data which provide an
incomplete information about some of observations (e.g. censored observations).

Every iteration of the EM algorithm consists of two steps, which are usually called E-step and
M -step. On E-step we try to restore the values of incomplete observations having the parameters
of model fixed. In many cases, these restored values are taken equal to corresponding conditional
expectations of these values given available information about these observations and parameters
of the model.

On the next M -step the parameters of model are recomputed based on new values of obser-
vations found on the E-step. To this end, the method of maximization of the likelihood function
may be used.

On each iteration, both sets of unknown quantities are changed. In many cases (and in the case
considered in this article), it is proved that the iterations converge to certain limits. The stopping
criterion is based on when the relative increase in the likelihood function is no bigger than some
small pre-specified tolerance value.

3.3 Parameter estimates

The complete likelihood function, based on the complete information for censored regression, is
defined as follows:

Lc(ψ , y, z̃) = (2π)−n/2(σ 2)−n/2 exp

{
− [(y − X1β)′(y − X1β) + (z̃ − X2β)′(z̃ − X2β)]

2σ 2

}
.

The logarithm of function Lc, known as the complete-data log-likelihood function lc, is given by

lc(ψ , y, z̃) = −n

2
log(2π) − n

2
log(σ 2)

− [y′y − 2β ′X′
1y + β ′X′

1X1β + z̃′z̃ − 2β ′X′
2z̃ + β ′X′

2X2β]

2σ 2
.

The conditional expectation of lc given the observed data (y, z) andψ is defined as Q-function,
given by

Q(ψ , y, z) = −n

2
log(2π) − n

2
log(σ 2)

− [y′y − 2β ′X′
1y + β ′X′

1X1β + B − 2β ′X′
2A + β ′X′

2X2β]

2σ 2
. (1)

Here, n2-vector A and a number B are calculated in the E-step as the first and second moments
of the conditional expectation for censored observations, given that their values are above the
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Journal of Applied Statistics 5

censoring point. It is straightforward to show that

A = E(z̃ | z̃ > z,β, σ 2) = X2β + σ f

(
z − X2β

σ

)
,

B = E(z̃′z̃ | z̃ > z,β, σ 2) = ‖X2β‖2 + σ(X2β + z)′f
(

z − X2β

σ

)
+ n2σ

2,

where f (x) = ϕ(x)/�(−x), ϕ(x) = 1/
√

2π e−x2/2, �(−x) = ∫ −x
−∞ ϕ(s) ds, and ‖ · ‖ is the

Euclidean norm of vectors.
The E-step consists of computing A and B. During the next step, the M -step, we maximize the

Q-function with respect to parameters β and σ using the values A and B. The maximized value
of the Q-function will lead to the maximum likelihood estimates (MLEs) for the model. Finding
the maximum amounts to finding the solutions to the following equations:

∂Q

∂β
= 0 and

∂Q

∂σ 2
= 0.

From this, we have

∂Q(ψ , y, z)
∂β

= X′
1y − X′

1X1β + X′
2AX′

2X2β

σ 2

and therefore

β̂ = (X′X)−1(X′
1y + X′

2A).

Similarly,

∂Q(ψ , y, z)
∂σ 2

= [y′y − 2β ′X1y + β ′X′
1X1β + B − 2β ′X′

2A + β ′X′
2X2β] − nσ 2

2(σ 2)2

and

σ̂ 2 = y′y + B + β ′(X′
1X1 + X′

2X2)β − 2β ′(X′
1y + X′

2A)

n
.

Here, β̂ and σ̂ 2 are MLEs of parameters β and σ 2, respectively. Using norms notation, the above
equation can be expressed as

σ̂ 2 = ‖y − X1β̂‖2 + ‖X2β̂ − A‖2 + B − ‖A‖2

n
.

Calculation of parameter estimates β̂
(k+1)

and (σ̂ 2)(k+1) in each (k + 1) step can be obtained as
follows:

β̂
(k+1) = (X′X)−1

(
X′

1y + X′
2X2β̂

(k) + σ (k)X′
2f

(
z − X2β

(k)

σ (k)

))
,

(σ̂ 2)(k+1) = (‖y − X1β̂
(k)‖2 + σ (k)(z − X2β̂

(k)
)′f ((z − X2β

(k))/σ (k)) + n2(σ
2)(k))

n
.
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6 T. Miljkovic and N. Barabanov

3.4 Variability assessment

McLachlan and Peel [16] defined an approach that can be employed for the variability assessment
of all parameter estimates. The empirical observed information matrix serves as an estimate of
the corresponding observed information matrix and is obtained by

Ie(ψ̂) =
n∑

i=1

	qi(ψ̂) 	 qi(ψ̂)′,

where ψ̂ = (β̂, σ̂ 2) represents the vector of parameter estimates, or MLEs, and 	qi(ψ̂) is the
gradient vector of the conditional expectation of the complete-data log-likelihood function con-
structed on the ith observation and evaluated at ψ̂ . Note that Q(ψ̂) = ∑n

i=1 qi(ψ̂). For each i,
	qi(ψ̂) is a vector of length (p + 2) defined by

	qi(ψ̂) =
((

∂qi(ψ)

∂β

)′
,

(
∂qi(ψ)

∂σ

))′
.

Consider a vector d = (d1, . . . , dn) of length n, where dj = 1 if jth observation is censored and
dj = 0 if jth observation is uncensored, j = 1, . . . , n. Denote by x1i, x2i the ith rows of matrices
X1, X2, respectively, which have been introduced in Section 3.1. Denote by y∗

i the ith component
of vector y∗ of uncensored and censored observations. It follows that

∂qi(ψ)

∂β
= x′

1iy
∗
i (1 − di) − x′

1ix1i(1 − di)β + x′
2idiE(y∗

i ) − x′
2ix2idiβ

σ 2
,

and

∂qi(ψ)

∂σ
= − 1

σ
+ (y∗

i )
2(1 − di) − 2β ′x′

1iy
∗
i (1 − di) + β ′x′

1ix1iβ(1 − di)

σ 3

+ E((y∗
i )

2)di − 2 − 2β ′x′
2iE(y∗

i )di + β ′x′
2ix2iβdi

σ 3
.

These partial derivatives will be used to assemble the covariance matrix. This covariance matrix
of the MLEs, which is obtained by taking the inverse of Ie(ψ̂), can be directly employed for
testing various hypotheses and finding confidence intervals for the parameters of the model.

3.5 Model selection

The Akaike information criterion (AIC) is a popular model selection procedure proposed by
Akaike [2]. The AIC considers the negative log-likelihood plus a penalty term that reflects the
number of free parameters (M ) in the model. The form of the AIC is given by

AIC = −2l(ψ̂) + 2M ,

where l(ψ̂) is defined as follows:

l(ψ̂) = − (n − m)

2
log(2π) − (n − m)

2
log(σ 2) − 1

2σ 2
(y − X1β)′(y − X1β)

+
n∑

i=n−m+1

log P(y∗
i > zi),
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Journal of Applied Statistics 7

l(ψ̂) = − (n − m)

2
log(2π) − (n − m)

2
log(σ 2) − 1

2σ 2
(y − X1β)′(y − X1β)

+
n∑

i=n−m+1

log

[
1 − �

(
zi − x2iβ

σ

)]
.

The model with the minimum AIC is selected as the best model to fit the data.
Another commonly used method in model selection was proposed by Schwarz [20] and is

known as Bayesian information criterion (BIC). Similar to AIC, the BIC approach adjusts the
log-likelihood l(ψ̂) by a penalty term which considers the number of observations (n) in the
sample in addition to the number of parameters in the model:

BIC = −2l(ψ̂) + M log(n).

The model with the minimum BIC is chosen as the best model to fit the data.

3.6 Normality assumption

In our model, the term ε in the linear regression model is supposed to have normal distribution.
This assumption is certainly important in deriving the iteration formulas for parameters (β, σ 2) of
this distribution. If the error term ε has different distributions, then the whole approach remains
valid, but the formulas on each step of the EM algorithm take different form. In many cases, the
M -step requires solution of implicit equations which is an additional computational burden. For
such cases, it is necessary to derive efficient methods to find maximum with respect to parameters
of distribution of the conditional expectation of the complete-data log-likelihood function lc. This
can be a subject of future investigations.

4. Model validation and diagnostics

4.1 Measuring model utility

It is a standard approach for modeling multiple regression to consider the coefficient of deter-
mination R2 as a useful measure of how well the model fits the data. The R2 is defined as the
proportion of total response variation that is explained by the model. Higher R2 indicates better
model fit. However, R2 alone does not indicate whether the model is appropriate. The R2 for
ordinary regression is defined as

R2 = 1 −
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
= 1 − SSE

TSS
,

where SSE represents the sum of squares for error and TSS is the total sum of squares. The TSS
measures the variability in the model relative to the horizontal line ȳ. The SSE measures the
variability in the response y from the fitted line ŷ. For ordinary regression, the best-fitted model
is defined based on the principle of least squares which minimizes the sum of squares of errors
SSE.

For right-censored regression using the EM algorithm, there is no comparable measure devel-
oped by researchers. The least-squares method cannot be applied due to the presence of censored
data. The following proposed R2 calculation is based on the idea of maximizing the Q-function
(1) given optimal values of the parameters relative to the maximization of the same function
assuming the intercept term only.
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8 T. Miljkovic and N. Barabanov

Assume that p is the number of independent variables in the model. Define the following
objective function based on the Q-function

J(β0, β1, . . . βp) = ‖y − X1β‖2 + ‖A − X2β‖2 + B − ‖A‖2.

Next, define

Jlin(p) = min
β0,β1,...,βp

J(β0, β1, . . . , βp),

Jconst = min
β0

J(β0, 0, . . . , 0).

where Jlin is the optimal value of the objective function J if we use the whole design partition
matrix X∗. Jconst is the optimal value of the same function if we use only the first column of X∗.

The proposed R-squared is defined as the reconstructed coefficient of determination:

R2
c(p) = 1 − Jlin(p)/Jconst. (2)

The R2
c(p) does not have a closed-form solution compared with an ordinary coefficient of

determination.

Theorem 1 The following statements about R2
c(p) are true:

(i) 0 ≤ R2
c(p) ≤ 1,

(ii) Function R2
c(p) is non-decreasing with respect to p.

Proof (i) By definition of Jlin and Jconst, we have 0 ≤ Jlin ≤ Jconst. Therefore, 0 ≤ R2
c(p) ≤

1. (ii) By definition, Jlin(p) is nonincreasing in p. Therefore, R2
c(p) is non-decreasing with

respect to p. �

4.2 Measuring the influence by the one-step deletion method

For assessing the influence of a single observation on the parameter estimates in censored regres-
sion, one of the popular methods is the one-step deletion method. The one-step deletion method
measures the change in parameter estimates when the ith data point is deleted from the sam-
ple. Weissfeld and Schneider [25] studied this method but our formula for the one-step deletion
method based on the EM algorithm is differently developed and produces different results.

Consider the following model

β̂ = (X′X)−1X′ŷ∗,

where ŷ∗ = ( y
A

)
is a vector of uncensored and reconstructed censored observations. Now, assume

that the ith observation is omitted. Then, instead of using matrix X, we have to use matrix X(i),
which is the matrix X with the ith row omitted. For this problem, the optimal model has optimal
parameters which can be found using a similar formula:

β̂(i) = (X′
(i)X(i))

−1X′
(i)ỹ

∗
(i),

where ỹ∗
(i) is the vector of uncensored and reconstructed censored observations based on all

available observations except for the ith observation.
Denote by ŷ∗

i the ith component of the vector of observations ỹ∗, based on all available obser-
vations including the ith. Denote by ỹ∗

(i) the vector ỹ∗ with the ith observation ŷ∗
i omitted. Notice

that vectors ỹ∗
(i) and ỹ∗

(i) have the same number of components; the former vector is based on all
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Journal of Applied Statistics 9

observations except the ith one, while the latter vector is based on all observations including this
ith observation.

Denote by xi the ith row of the matrix X which is omitted in X(i). Then, X′X = X′
(i)X(i) + x′

ixi

and X′ỹ∗ = X′
(i)ỹ

∗
(i) + x′

iŷ
∗
i . Thus,

(X′X)−1(X′
(i)X(i) + x′

ixi) = I.

Multiplying this equation by (X′
(i)X(i))

−1 we obtain

(X′X)−1(I + x′
ixi(X′

(i)X(i))
−1) = (X′

(i)X(i))
−1. (3)

Next, if we multiply each side of equation by xi from the left and regroup the terms, we have

xi(X′X)−1 + xi(X′X)−1x′
ixi(X′

(i)X(i))
−1 = xi(X′

(i)X(i))
−1,

xi(X′X)−1 = (1 − xi(X′X)−1x′
i)xi(X′

iXi)
−1,

xi(X′
(i)X(i))

−1 = (1 − xi(X′X)−1x′
i)

−1xi(X′X)−1. (4)

Substituting (4) into appropriate part of (3) we get

(X′X)−1(I + x′
ixi(X′X)−1

1 − xi(X′X)−1x′
i

) = (X(i)X(i))
−1.

Then, we have

�βEM = β̂ − β̂(i) = (X′X)−1X′ŷ∗ − (Xi
(i)X(i))

−1X′
(i)ỹ

∗
(i)

= (X′X)−1

[
X′

(i)ŷ
∗
(i) + x′

iŷ
∗
i −

(
I + x′

ixi(X′X)−1

1 − xi(X′X)−1x′
i

)
X′

(i)ỹ
∗
(i)

]

= (X′X)−1

1 − xi(X′X)−1x′
i

[(1 − xi(X′X)−1x′
i)X

′
(i)(ŷ

∗
(i) − ỹ∗

(i))

+ x′
iŷ

∗
i (1 − xi(X′X)−1x′

i) − x′
ixi(X′X)−1X′

(i)ỹ
∗
(i)].

Finally, we obtain �βEM as

�βEM = (X′X)−1

1 − xi(X′X)−1x′
i

[[(1 − xi(X′X)−1x′
i)I + x′

ixi(X′X)−1]X′
(i)(ŷ

∗
(i) − ỹ∗

(i)) + x′
i(ŷ

∗
i − xiβ̂)].

By comparing this formula to that developed by Weissfeld and Schneider, we observe that they
are different and coincide if ŷ∗

(i) − ỹ∗
(i) = 0. However, if the difference ŷ∗

(i) − ỹ∗
(i) is not equal to

zero, then in general, the formulas produce different results.
In order to eliminate the influence of an observation due to its position on the interval of x

values, the vector �βEM in the formula can be divided by the vector (X′X)−1xi component-vise
providing a valuable measure of sensitivity of parameters with respect to the coefficients of the
linear model. Thus, the normalized version of the formula is defined as

[�βEM
NOR]j = [�βEM]j

[(X′X)−1xi]j
, j = 1, 2, . . . , p.

Relatively large values of this statistic indicate the most influential observations on the coef-
ficient estimates of the model. This issue was not addressed by Weissfeld and Schneider for the
one-step deletion method based on the EM algorithm.
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10 T. Miljkovic and N. Barabanov

5. Simulation study

A simulation study was conducted to assess the performance of the proposed method for different
sample size and amount of censoring. These data were simulated from the model:

y = 2 + X1 + X2 + ε,

where X1 is designed such that xi = i/n, i = 1, 2, . . . , n where n is the sample size, X2 ∼
Binomial(n, 0.5), and ε ∼ N(0, 0.2). For this model β0 = 2, β1 = 1, and β2 = 1. Different sim-
ulation settings were created by manipulating the sample size (300, 60) and the percentage of
points censored (10%, 30%, and 50%) in order to validate performance of the algorithm. Once
these data were generated, censored points were selected at random on the entire interval. Their
values were compared with a censoring level randomly drawn from U(1, 4). If a value of a
selected data point was above the censoring level, it was trimmed at the censoring level, other-
wise it remained uncensored. This procedure was repeated until the desired censoring amount
was achieved.

The results of the 1000 runs for each setting of simulation are summarized in Table 1, which
shows the average parameter estimates and their corresponding mean square errors (MSE). For
visual illustration, a box plot summary of estimated β1 for sample size (300, 60) with 10%,
30%, and 50% censoring is shown in Figure 1. The results show that the proposed parameter
estimators have very small bias and the MSE. Therefore, the proposed EM method works very
well in a multiple regression setting assuming a normal model. Sample size and the amount

Table 1. Simulation results.

Parameter Sample size Censoring (%) β̂ (MSE)

β0 60 10 1.9992 (0.0035)
30 1.9982 (0.0044)
50 2.0051 (0.0056)

300 10 1.9993 (0.0007)
30 2.0011 (0.0008)
50 2.0010 (0.0011)

β1 60 10 1.0008 (0.0088)
30 1.0055 (0.0118)
50 0.9993 (0.0147)

300 10 1.0014 (0.0018)
30 0.9997 (0.0022)
50 1.0030 (0.0031)

β2 60 10 1.0021 (0.0028)
30 1.0021 (0.0039)
50 1.0023 (0.0053)

300 10 1.0004 (0.0005)
30 1.0002 (0.0007)
50 1.0043 (0.0010)

σ 60 10 0.1932 (0.0004)
30 0.1921 (0.0005)
50 0.1905 (0.0007)

300 10 0.1987 (0.0001)
30 0.1984 (0.0001)
50 0.1979 (0.0001)
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Figure 1. Simulation results for β1 for sample size (300, 60) with 10%, 30%, and 50% censored data.

of censoring have impact on the parameter estimates and their corresponding MSEs. It can be
noticed from Table 1 that an increase in MSE is observable for an increase in sample size and
amount of censoring.

6. Application to ND DVA data

6.1 Data

Data used in this study were provided by ND DVA. Typically, categories of health benefits avail-
able to veterans are capped (right censored) or limited at the certain level. The censoring points
change over time, as they are subject to review and state approval, and they may vary across dif-
ferent categories. For any claim, if the expense exceeds the amount granted, it will be reimbursed
at the value of granted amount.

Medical grants are subject to a limit and the annual amount of benefits is capped (right
censored). The data provided consist of payment amounts granted to each applicant for years
2000 − 2010. Table 2 shows the variables provided and their descriptions.

About half of the variables listed in Table 2 were of interest to our project. The difference
between application year and birth year was used to determine the applicant’s age. Year when
the application was approved was extracted from the approved date. An applicant is given only
90 days to use the grant. In this case, approved date and voucher date are only three months
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12 T. Miljkovic and N. Barabanov

Table 2. The ND DVA data summary.

Variable Description

VoucherDate Day/month/year when the benefit payment is made
Gender Male(0) or female (1)
ApplicationDate Day/month/year when the application was filed
ApprovedDate Day/month/year when the application was approved
BirthDate Birth date of each applicant
AmountGranted Amount granted by the grant program
Category Category of benefits (dental, denture,hearing, optical, and special)
ApplicantTB Applicant’s unique non-identifiable ID
Status Status of a person receiving benefits (v-primary beneficiary(veteran),

vs-spouse of a living veteran, and w-widow/widower).
NoIndependents Family size including applicant(seven levels:1,2,3,4,5,6,7)
AmountPaid Benefit amount paid
ZipCode 5-digit postal code of the applicant address
County County code of the applicant address
CountyName County name of the applicant address

apart, and the data are available only for those applicants who actually used the grants. Dates for
others who have not managed to use the grant were provided as cancelations and were ignored
in this study. The amount of money granted as well as the amount of money given from 2000 to
2010 by ND DVA is adjusted for inflation using the Consumer Price Index published by Bureau
of Labor Statistics, US Department of Labor [4].

Historically, benefit categories carry different benefit caps (limits) on an annual basis. Dental
benefits started with a $500 cap as of 12/2004, then increased to $750 as of 1/2006, and finally
reached $1000 as of 11/2007. Dental services sometime require more than one appointment;
in this case, applicants receive several payments during the year. Therefore, the data for dental
category were aggregated by year and applicant. The data for dentures, hearing, optical, and
special categories of benefits were excluded since they contained significantly lower number of
records and as such they may not be reliable.

The ND DVA uses monthly income level and family size to determine if an applicant meets
benefit eligibility criteria. Each income level corresponds to a certain family size. For example,
a family of 2 earning less than $1400 per month, or a family of 8 earning less than $2600 per
month, would be eligible for benefits. Many records were missing family size but had the income
level provided. For this reason, we used the income level only and ignored family size as these
two variables seem to be correlated.

Dental records show that the applicant’ age varies from 24 to 94 with 84% of the individuals
being older than 50. Men represent 287 applicants compared with 81 women. Based on status,
26 applicants are spouses of living veterans and 33 applicants are widows or widowers. Living
veterans represent 309 individuals or 84% of the sample. It is observed that 34 individuals or
9.2% of the sample reported zero income. The highest income reported is $2600 per month for
a large family. Thus, most of these people live below the poverty level. The poverty guidelines
are issued each year in the Federal Register by the Department of Health and Human Services
(HHS) [28]. The 2008 income threshold by family size, reported by HHS, for the 48 contiguous
states is summarized in Table 3. ND had 11.8% of its total population living below the poverty
level in 2007 compared with the national average of 13% reported for the same period. Poverty
guidelines determined by ACOVA on the basis of national statistics are reported in Table 4.
These poverty tables are analyzed periodically by ACOVA and they are used to adjust eligibility
criteria for benefits as well as to modify limits on benefits.
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Table 3. Department of human services-poverty guidelines.

Variable Description

Household size 1 2 3 4 5 6 7
Annual income $10,400 $14,000 $17,600 $21,200 $24,800 $28,400 $32,000

Table 4. Eligibility requirements set by ACOVA.

Variable Description

Household size 1 2 3 4 5 6 7
Annual income $14,400 $16,800 $19,200 $21,600 $25,200 $28,800 $31,200

There were 575 annual aggregate applications for dental benefits used by 368 different individ-
uals for years 2000–2010. We identified 274 (48%) applications with a paid amount in benefits
equal to or higher than the amount granted. These policies represent right-censored data. For
uncensored data records, paid amount in benefits was greater than zero and less than the defined
limit (cap or censoring point).

Finally, the following variables were selected for inclusion in the modeling of dental benefits:
year, age, gender, amount granted, censored amount, income level, and applicant’s status. Appli-
cation year, age, gender, income level, and applicant’s status represented explanatory variables,
while the amount paid (adjusted for inflation) was used as a response variable in the model.

6.2 Analysis

The EM algorithm was applied to illustrate the modeling of veterans’ health benefits with a spe-
cial focus at dental benefit category. Statistical computing was performed in R software version
3.01. First, the right-censored regression model was considered with all explanatory variables.
That is

E(Benefit Paid) = β0 + β1(Application year) + β2(Age) + β3(Gender)

+ β4(Income Level) + β5(Spouse) + β6(Widow/er). (5)

The EM algorithm, employed in modeling parameter estimates and variability assessments,
indicated that gender, age, income level, and spouse were not significant predictors of the
paid benefits. Application year and widow/er were significant predictors with the possibility of
application year entering the model as a quadratic term. The parameter estimates (and their sig-
nificance) of this model are given in Table 5. In subsequent model selections, five additional
models were examined. Additionally, we also considered models with the interaction terms
but none of the interaction terms were significant. Summary of results for six selected mod-
els includes the log-likelihood value, AIC, and BIC and it is given in Table 6. The minimum
values of AIC and BIC are reported for Model-6, which is proposed to be the best model.

Parameter estimates for Model-6 with their confidence intervals and corresponding p-values
are summarized in Table 7. If we consider the same portfolio of applicants, the total dental
benefit needs of ND veterans for the period 2003–2009, calculated based on the EM algorithm,
was $407,562 compared with the amount of $333,472 actually spent. The difference of $74,090
can be used to help ACOVA increase the cap on benefits in the future and suggest to the State
Treasurer that additional investments were needed in funding this grant program.
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14 T. Miljkovic and N. Barabanov

Model-6 is the best model based on AIC and BIC criteria even though the gender is not sig-
nificant variable. According to this model, widowers generate $143.42 less in benefit payments
on average compared with a living veteran or a spouse of a living veteran. Gender does not seem
to be a significant predictor of benefit payments. Benefits are also a function of money that is
available in the state budget for that purpose. When more money is available in state budgets,
more needy veterans will potentially benefit.

The data show that in more recent years, a higher amount of money was available for spending
even when the benefits are adjusted for inflation. The intercept coefficient provides us with a fixed
cost per person for running this program. In other words, the veterans spent, based on Model-6,
an amount of about $522.45 per applicant/per year irrespective of the number of applicants and
their characteristics. We observe that the income level is an insignificant predictor of benefits
used. If the overall veteran population was considered in the analysis, one might expect that the

Table 5. Parameter estimates for the full em model.

Parameters Estimates 95% CI p-Value

Intercept 329.60 (116.36, 542.83) 0.0024
Application year 58.37 (42.66, 74.07) 0.0000
Age −0.31 (−3.30, 2.68) 0.8391
Gender 88.19 (−34.30, 210.69) 0.1582
Income level 0.05 (−0.03, 0.14) 0.2422
Spouse −54.12 (−223.15, 114.91) 0.5303
Widow/er −157.45 (−328.90, 13.99) 0.0718

Table 6. Summary of different criteria used in the model selection.

Model Log-likelihood AIC BIC

Model-1 −2126.44 4266.88 4272.19
Model-2 −2129.39 4262.78 4264.29
Model-3 −2128.37 4262.74 4265.19
Model-4 −2129.14 4262.28 4263.79
Model-5 −2128.12 4262.23 4264.50
Model-6 −2120.93 4249.86 4252.89

Notes: Model-1: Full model per (5).
Model-2: E(Benefit Paid)= β0 + β1(Application year).
Model-3: E(Benefit Paid)= β0 + β1(Application year) + β6(Widow/er).
Model-4: E(Benefit Paid)= β0 + β1(Application year)2.
Model-5: E(Benefit Paid)= β0 + β1(Application year)2 + β6(Widow/er).
Model-6: E(Benefit Paid)= β0 + β1(Application year)2 + β3(Gender) + β6(Widow/er).

Table 7. Parameter estimates for the EM Model-6.

Parameters OLS estimates EM estimates EM 95% CI p-Value

Intercept 375.76 522.45 (457.54, 587.36) 0.0000
(Application year)2 4.93 4.41 (3.25, 5.58) 0.0000
Gender 34.39 71.00 (−23.25, 165.26) 0.1300
Widow/er −86.38 −143.42 (−286.90, 0.05) 0.0500
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lower income veterans are the most likely to use the benefits. However, most veterans eligible
for benefits have income below the 100% poverty threshold. Hence, the income level is very low
and it does not segregate people further into subgroups. Age is another insignificant variable in
Model-6, suggesting that benefits are used across all age groups 23–94.

The results of Model -6 are compared with those generated by ordinary least square when
censoring is ignored and an improvement is observed. The ordinary least square produces a
lower mean and the intercept of the model compared with the EM method. By employing the
EM method, not only that we are able to estimate parameters more accurately in the presence
of censored data, but we are also able to find the conditional execrated values of those censored
observations (the value above the censoring level). Using the ordinary least square would result
in an underestimation [3] and under-prediction of future benefit needs. For example, the ordinary
least square generates fixed cost of dental expenses of $375.76 for running this program com-
pared with $522.45 estimated by the EM method. The latter one is more reasonable considering
the cost of dental services for the time period considered in the analysis.

The results of the EM method are more informative to the policy holders who make decisions
about ND DVA program.This analysis helps our understanding of what are the determinants of
the distribution of the available benefit funds. It also helps us determine the total benefit need of
the veteran population in ND.

The reconstructed coefficient of determination for Model-6 is 10.75%, lower than the coef-
ficient of determination of 25.74% for the same model when censoring is ignored. The overall
fit is relatively low but this is due to the large variability observed in the data set and the large
proportion of censored points.

In addition, the reconstructed values for the censored observations can be used to validate
the reasonability of the existing benefit caps. Based on the selected model, one can obtain more
information about the average amount of expenses in excess of the existing cap.

Six uncensored outliers (1% of the total number of observations) were found in the data.
These outliers had t-values above the critical value of 1.96 used for their detection. After careful
inspection of the data, it was found that these observations reported extremely low amounts of
benefits in the range of $31–75. Without additional knowledge as to whether these observations
are results of errors or true benefit values, it was decided that they should not be removed.

Influence diagnostics based on the one-step deletion method were applied to the ND DVA
dental data. Formula (2), proposed in Section 4.2, was used in these calculations. The results
for the four parameters from Model-6, based on all 575 data points, are plotted in Figure 2.
The biggest spikes correspond to the most influential points. By careful inspection, it was found
that these influential points correspond to most of the censored data reported for years 2006
and 2007 as well as uncensored outliers from these years. If we recall that the cap on dental
benefits increased from $500 to $750 as of 1/2006 and further increased from $750 to $1000
as of 11/2007, these results are expected. The jumps in the censoring levels as well as several
uncensored outliers explain the high influence of the corresponding observations on parameter
estimates.

6.3 Discussion

Data show that majority of widows and widowers veterans in ND have age range 49–91 with a
half of them being older than 75. They are scattered around the state of ND far from Cass County
where ND DVA office is located. These counties includes Morton, Emmons, Grant, McIntosh,
McKenzie, Stark, Tower, Ward, Wells, and Renville. In our analysis, we found that widows
acquire fewer benefits, on average, compared with living veterans. This could be due to their
age and immobility considering the distance from the main ND DVA office in Cass County. The
DVA agency may consider different ways of reaching out to this veteran’s population segment.
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Figure 2. The influence based on the one-step deletion of β0, β1, β2, and β3.

The amount of money granted seems to vary by year. In most recent years, more money was
available for benefits. The trend in number of veterans is increasing. Even though caps by cat-
egory of benefits have been evaluated periodically, the latest caps are still low compared with
their expected level generated by the EM algorithm.

The veterans who reported zero income should be evaluated for other benefit opportunities.

7. Conclusion

This paper provides a novel application of the EM algorithm for modeling the right-censored
multiple regression. The right censored, response variable represents the amount of benefits
received by the low-income veterans population in ND as a function of individual character-
istics such as gender, age, income, application year, marital status, and family size. The EM
algorithm was employed for finding the parameter estimates of the censored multiple regres-
sion model. Simulation study showed that the proposed method performs well under different
simulation settings. New formulas for reconstructed coefficient of determination and influence
diagnostics based on one-step deletion were derived using the objective functions of the EM
algorithm. Application of this model to ND veterans’ data set showed that significant predic-
tors of veterans benefits are application year, marital status, and gender. On average, widowers
acquire significantly less benefits than a living veteran. Application year is another significant
predictor of benefits as the money available from the state may vary from year to year. Gender
does not seem to be a significant predictor of benefit payments. The influence diagnostics for-
mula based on one-step deletion allowed us to easily detect those observations that have great
influence on the parameter estimates such as changes made in the censoring level from year to
year. This model can also be used to asses appropriates of benefit caps. The reconstructed value
of the censored observations can be easily obtained from the EM model and used when decisions
are made to increase the benefit caps. These results and findings should be beneficial to both ND
policy-makers and policy-makers in other states with similar programs.
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