
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Investigation of Programming Languages

for an Automated Manufacturing System

Mark Ma
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/20

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1995-005

Investigation of Programming Languages for an
Automated Manufacturing System

Mark H. Ma

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Investigation of Programming Languages for an

Automated Manufacturing System

Mark H. Ma
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #95-005 July, 1995

Investigation of Programming Languages for an
Automated Manufacturing System

Final Report

by Mark H. Ma

Department of Systems Analysis

Miami University

Oxford, Ohio

August, 1995

Submitted to the faculty of Miami University
in Partial Fulfillment of the requirements for the degree

of Master of Systems Analysis

Committee Members

Professor Douglas Troy Advisor :
Dr. Alton F. Sanders Member :
Dr. Donald L. Byrkett Member :

ABSTRACT .. I11

1 . INTRODUCTION ... 1

.. 2 . LANGUAGES FOR CONTROL PROGRAMMING 3

2 .1 INTRODUCTION TO PROGRAMMING LANGUAGES FOR CONTROL .. 3
.. 2.1.1 Textural Languages 3
.. 2.1.2 Graphic Languages 5

2.2 DESCRIPTION OF LADDER LOGIC .. 8

3 . CPL LANGUAGE .. 13

.. 4 . LADDER LOGIC ENVIRONMENT 17

... 5 . IMPLEMENTING OMEGA CONTROLWARE 19

5.1 O c APPLICATION ... 19
5.1.1 Data Tables .. 19
5.1.2 Relay Ladder Logic Code .. 21
5.1.3 Processes ... 24

5 . 2 R L L CODE TO CONTROL THE MANUFACTURING CELL ... 25
5.2.1 Overview ... 2 5
5.2.2 RLL Code ... 26

... 5 . 3 INTERFACING PROCESSES 43
... 5.3.1 Polling the Acquisition Board 4 4

... 5.3.2 Communication with Robot and Lathe 47
5.3.3 Robot Software Interface ... 48

.. 5.3.4 CNC Machine Software Interface 50
5.3.5 Communication with Automated Storage and Retrieval System ... 5 4

... 6 . COMPARISON OF LADDER LOGIC LANGUAGE VS CPL 58

... 6.1 STRENGTHS OF RLL OVER CPL 58
... 6 . 2 WEAKNESSES O F R L L USING OC 59

.. 7 . CONCLUSION 60

.. REFERENCES 62

.......................... APPENDIX A COMPLETE RLL PROGRAM USING OMEGA CONTROWARE 63

Abstract

This paper is an investigation of alternative programming languages

for use in manufacturing control applications. After reviewing several types

of languages, two alternative languages for programming the flexible

manufacturing cell in Miami University's Manufacturing Engineering

Department are investigated. One language, called Cell Programming

Language (CPL), is an object-like high level language developed at Miami

Universi ty . The o ther i s Relay Ladder Logic (R L L) which is the

predominant language used in industry to program programmable logic

controllers. An RLL program that is equivalent to an existing CPL program

was developedfor this purpose.

1. Introduction

A flexible manufacturing system (FMS) can be considered as a set of work cells

that operate and are scheduled independently of each other rBenhabib891. Each individual

work cell is composed of one or more machine tools linked by a common material

handling system and under the control of a centralized work cell controller for the

purpose of producing the given requirements of a family of parts [Martin89]. The work

cell controller is programmed to coordinate the interoperation of the various devices in

the workcell.

A typical FMS work cell may consist of robots, conveyors, CNC machines,

sensors, and other devices. Devices are connected to the cell controller computer such as

a PC or Programmable Logic Controller (PLC) through some interface electronics and

data acquisition boards. The interface electronics serves to convert signals from the PC

or PLC to appropriate signals for these devices. Some devices, such as robots and CNC

machines are controlled by programs written in the host command languages of these

machines.

A example of a workcell is in the Manufacturing Engineering Department's CIM

Laboratory at Miami University, and consists of two robots, one CNC lathe, one

conveyor, and one automatic storage system. The relevant sensors are wired, through an

external relay interface, to a data acquisition board in a PC. The robots, lathe, and storage

system are connected to either the serial port or parallel port on the PC.

Cell Programming Language (CPL) is an object-like workcell programming

language developed at Miami University for use by students in the Manufacturing

Engineering Department for programming the PC that controls the work cell

[Meghamala92]. Currently, CPL is used only at Miami.

The purpose of this project is to evaluate the feasibility of using Relay Logic

Language (ELL) as an alternative to CPL for programming the PC controller of the FMS

work cell in the Manufacturing Engineering CIM Laboratory at Miami University. RLL

code will be developed to control the cell and RLL will be compared to Cell

Programming Language (CPL).

Section 2 will review languages for programming work cells. Section 3 describes

the CPL work cell programming language. Section 4 presents an overview of relay ladder

logic. Section 5 describes an implementation of RLL code to control a work cell. Section

6 presents a comparison between RLL and CPL, and section 7 concludes this report.

2. Languages for Control Programming

2.1 Introduction to programming languages for control

A program for manufacturing control is defined as a " logical assembly of all the

programming language elements and constructs necessary for the intended signal

processing required for the control of a machine or process by a programmable controller

system" [IEC 1 13 1- 11.

The International Electrotechnical Commission (IEC) has proposed a set of

languages for writing control programs[IEC 113 1- 11. They can be categorized as textual

or graphic. The languages in each category are described below.

2.1.1 Textural Languages

The two textual languages defined in the standard are called IL (Instruction List)

and ST (Structured Text).

Instruction list programs are composed of a sequence of low-level instructions,

similar to assembly language. Each instruction begins on a new line and contains an

operator with optional modifiers, and, if necessary for the particular operation, one or

more operands separated by commas. Operands can be either literals or variables.

An example of the instruction list code is shown in the Table 1.

Table 1. Example of the instruction list code

The semantics of operator LD is to set the current result equal to operand; the

semantics of operator ANDN is Boolean AND NOT; the semantics of operator ST is to

store the current result to operand location.

The instruction LD %IXl is interpreted as

result := %IXl

The instruction ANDN %MX5 is interpreted as

Label
START:

Operator
LD
ANDN
ST

Operand
%IX 1
%MX5
%QX2

Comment
(* PUSH BUTTON *)
(* NOT INHIBITED *)
(* FAN ON *)

result := result AND NOT %MX5

The instruction ST %QX2 is interpreted as

%QX2 := result

A structured text program is composed of high-level statements and expressions,

similar to a third-generation high level programming language. An expression is a

construct, which, when evaluated, yields a value. Expressions are composed of operators

and operands. An operand can be literals, variables, function invocations, or another

expression. The operators of the ST language are summarized in the Table 2.

Table 2. Operators of the ST language.

The statements of the ST language are summarized in Table 3. Statements are

Precedence
HIGHEST

LOWEST

terminated by semicolons.

Symbol
(expression)
identifier(argument list)
* *
-

NOT
*
1
MOD
-t
-

<, >, <=, >=
- -
<>
&
AND
XOR
OR

No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

An equivant example (see Table 1) of the Structured Text is showed below:

Operation
Parenthesization
Function evaluation
Exponentiation
Negation
Complement
Multiply
Divide
Module
Add
Subtract
Comparison
Equality
Inequality
Boolean AND
Boolean AND
Boolean Exclusive OR
Boolean OR

a := b;
n := a AND NOT c;
d : = a :

Table 3. ST languages statements

2.1.2 Graphic Languages

The two graphic languages defined in the standard are LD (Ladder Diagram), also

called Relay Ladder Logic (RLL), and FBD (Function Block Diagram) [IEC 1 13 1- 11.

Examples

A:=B; CV:=CV+l ;C:=SIN(X);
CMD-TMR(IN:=%IX5, PT:=T#300MS);
A:=CMD-TMR.Q;
RETURN;
D:=B*B-4*A*C;
IF D < 0.0 THEN NROOTS:=O;
ELSEIF D := 0.0 THEN

NROOTS := 1;
XI := -B/(2.0*A);

ELSE
NROOTS := 2;
X l := (-B+SQRT(D))/2.0*A);
X2 := (-B-SQRT(D))/2.0*A);

END-IF;
TW:=BCD-TO-INT(THUMB WHEEL);
TWERROR :=O;
CASE TW OF
1,5 : DISPLAY:= OVEN-TEMP;
2 : DISPLAY := MOTOR-SPEED;
3 : DISPLAY := GROSS-TARE;
4,6.. 10 : DISPLAY := STATUS(TW-4);
END-CASE;
QWl00 := INT-TO-BCD(D1SPLAY);
J := 101;
FOR I := 1 TO 100 BY 2 DO

IF WORDS[I] = 'KEY' THEN
J := I;
EXIT;

END-IF
END-FOR;
J := 1;
WHILE J <= 100 & WORDS[J] <> 'KEY' DO

J := J+2;
END-WHILE;
J : = - 1 ;
REPEAT

J:= J+2;
UNTIL J=101 OR WORDS[J] = 'KEY'
END-REPEAT;
EXIT;
, ,

No.

1
2

3
4

5

6

7

8

9
10

Statement
typemeference
Assignment
Function block Invocation and
FB output usage
RETURN
IF

CASE

FOR

WHILE

REPEAT

EXIT
EMPTY STATEMENT

Link elements may be horizontal or vertical. The state of a link element can be

either "ON" or "OFF, corresponding to the literal Boolean values 1 or 0, respectively. A

horizontal link element is indicated by a horizontal line. A horizontal link element

transmits the state of the element on its immediate left to the element on its immediate

right. The vertical link element consists of a vertical line intersecting with one or more

horizontal link elements on each side. The state of the vertical link represents the

inclusive OR of the ON states of the horizontal links on its left side.

A contact is an element which imparts a state to the horizontal link on its right

side which is equal to the Boolean AND of the state of the horizontal link at its left side

with an appropriate function of an associated Boolean input, output, or memory variable.

A contact does not modify the value of the associated Boolean variable.

A coil copies the state of the link on its left to the right without modification, and

stores an appropriate function of the state or transition of the left link into the associated

Boolean variable.

Within a program organization unit written in LD, networks are evaluated in top

to bottom order as they appear in the ladder diagram, except asthis order is modified by

the execution control elements.

The other graphic language is Function Block Diagram (FBD). FBD represents

signal flow which is analogous to the flow of signals between elements of a signal

processing system. Signals in the FBD language flow from the output (right-hand) side of

a function or function block to the input (left-hand) side of the function or function

block(s) so connected. An example of a FBD is shown in Figure 2.

Figure 2 Feedback path example using function block diagram

ENABLE

Within a program organization unit written in the FBD language, the order of

network evaluation follows the rule that the evaluation of a network must be complete

before starting the evaluation of another network which uses one or more of the outputs

of the preceding evaluated network.

Since the most common programming language for controllers is ladder

logic[Chaar90], this language is described in more detail in the next section.

2.2 Description of Ladder Logic

&

Ladder diagrams, which have been used for decades for describing relay circuits,

are now being utilized for programming programmable logic controllers (PLCs). This is

so because many practicing engineers and technicians are familiar with these diagrams,

and feel comfortable working with them [Pessen89]. Ladder diagrams were thus adapted

as a graphical programming language for PLCs.

Ladder logic programming typically deals with relays (contacts) and coils.

Contacts can be 'Normally Open' (denoted by the ---I I--- symbol) or 'Normally Closed'

(denoted by the ---Ill--- symbol). 'Coils' are denoted by the ---()--- symbol. A Normally

open contact does not pass power unless its associated coil is energized by applying

power to it. A Normally closed contact passes power until its associated coil is energized

RUN

START1
START2

>= 1

by applying power to it. Using these contacts and coils a number of useful circuits can be

'wired' using ladder logic. An example is a 'one shot'. One shot can be used to initialize

routines, to turn on outputs or control relays for 1 scan using a switch. Figure 3 shows an

example of a one shot used to turn on control relay 100 for 1 scan when switch 2000 is

pressed.

Figure 3 Example of one shot

A Latched relay is another useful device. This relay can latch the state of an input

during a scan and can be then used to drive other logic over successive scans. One use can

be in recognizing when a proximity switch has been tripped. Figure 4 shows that output

100 becomes energized when contract 2000 is tripped and then stays on forever or until

contract 10 1 is tripped.

Figure 4 Example of latched relay

A Flip-Flop is a device that changes its output state each time an input is

energized. Deenergizing the input has no effect on the output. In figure 5 Control 200 is

the output. On the first energization of input 2000, 200 turns on. Note that control relay

100 is a one shot of input 2000.

Figure 5 Example of a Flip-Flop

A small ladder program that corresponds to CPL program (turn on the conveyor

and wait for pallet to arrive, then turn the conveyor of f) is shown below in Figures 6 and

7.

In Figure 6, there are two conditions to turn the conveyor on: start which is set

when the lathe process completes, and p-liftdw which is set when pallet lift is down.

In Figure 7, there are also two conditions to turn conveyor off: p-arr which is set

when a pallet arrives at one specific position, and t7-out which is set when the whole

process completes.

CON-ON

start conveyor -------I 11 .. (L) -------

p-liftdw -------I 1 1 ---------------

Figure 6 Turn on conveyor

CON-OFF
p-arr p-stops conveyor

-------I T 1 ------------- --------------

M I
(U) ---------

t7-out

-------I T t

Figure 7 Turn off conveyor

While manufacturers of PLCs usually provide detailed manuals explaining how

to enter a given ladder diagram into the controller's memory, these manuals are generally

of little or no help in designing the ladder diagram to begin with.

In the past, most ladder diagrams were designed by intuition, for example

[Saake70], shows ladder diagrams for various applications, but does not really explain

how these were designed. The method usually employed is to add each element as needed

for the next step of the control sequence, and then check to make sure that the element

just added does not interfere with previous steps. If it does, another element is added to "

patch things up ". It is obvious that the result obtained with such methods depends to a

great deal on the designer's skill and experience. Thus, although RLL is currently the

most popular language for programming controllers, it is not clear that it is the best. To

evaluate the feasibility of using RLL to program Miami's FMS cell, RLL is compared

with the language currently used for control programing called CPL. CPL language is

described in the next section.

3. CPL Language

Cell Programming Language (CPL) is an object-like workcell programming

language developed at Miami University for use by students in the Manufacturing

Engineering Department [Meghamala92].

An example of a CPL program is shown in Figure 8:

Ports
Comport COMl 300 7 2 0;
PortA 64256 Input;
PortB 64257 Output;
PortC 64259 Output;

End

Device
Conveyor Coil PortC
Photocell Sensor PortA
Robot Programmable LPTI;
Lathe Programmable Comport;
Delay Wait;

End

Procedure
Lathe. Do(load1ath);
Robot.Send("NT");
Robot. Do(1oadpart);
Conveyor.On;
Photocell. WaitOn;
Delay.500;
Conveyor. 08;

End

Figure 8 An example of a CPL program.

A CPL program consists of three sections : port declarations, device declarations,

and the procedure declaration.

The port declaration section is used to assign physical I10 port addresses to each

register on the data acquisition board in the PC and to define data flow direction

(inputloutput) of each register. In CPL these addresses are given port names for later

reference. Port name can also be assigned to serial (COM) ports or parallel (LPT) ports.

The device declaration section is used to declare device objects and associate a

port and a bit number with each device object. The device types are predefined in the

language. Each declaration consists of a device-identifier, a device-type, and a

port-identifier and bit-number.

The device-identifier is a user defined name and device-type is keyword defined

in the CPL language. The device-types are shown in the Table 4. The port-identifier

should be a name defined in the port declaration section, and the bit-number is a constant

between 0 and 7 and corresponds to a bit on the data acquisition board. For a

programmable device type, the port name COM1, COM2, or LPT1 would be specified

depending on which communication port is connected to the device. Each device-type

has a set of functions (or methods) shown in Table 4 that can be used with a device of

that type in the procedure section.

Table 4. Device Types and Valid Function

TYPES
COIL
SENSOR
PULSE
PROGRAMMABLE
DELAY

The procedure section consists of control statements. Each statement represents

one device operation and directly corresponds to an actual operation of the real device in

the FMS cell. There is only one procedure section and all statements are executed in

sequence. There are no control constructs, such as loops or conditions, and no

subroutines.

To completely control a FMS cell, a complete CPL-based program requires robot

programs and CNC programs as well as the CPL program. An example of a complete

program to control the cell, that is in use at Miami, is shown in Figure 9.

VALID FUNCTION
ON, OFF
WAITON, WAITOFF
STROBE
SEND, DO
MILLISECONDS

Ports /* Port declarations
PortC 64259 Output;
PortA 64256 Input;

End

Devices /* Device declarations
PaEletLiftUp Pulse
Conveyor Coil
Photocell Sensor
PalletArrived Sensor
Chuckopen Pulse
Lathe Programmable
Robot Programmable
Lathestart Pulse
Lathestop Sensor
PaEletLijted Sensor
Palletstops Coil
Chuckclose Pulse
PalletLifDown Pulse
LatheRunning Sensor
LatheHandShk Sensor
Delay Wait;

End

Procedure /* Device operations
1 Lathe. Do(load1ath);
2 Robot.Send("NTH);
3 Palletstops. On;
4 Conveyor. On;
5 Photocell. WaitOn;
6 PalletStops. Off;
7 PalletArrived. WaitOn;
8 Delay. 1000;
9 PalletL@Up.Strobe;
10 PalletLifed. WaitOn;
11 Conveyor. Off;
12 ChuckOpen.Strobe;
13 Robot. Do(LoadPart);
14 Delay.lOOO;
15 ChuckClose.Strobe;
16 Delay.2000;
17 Robot.Do(MoveAway);
18 Delay.2000;
19 LatheStart.Strobe;
20 LatheStop. Waitoff;
2 1 Robot. Do(MoveBack);
22 Delay.2000;
23 ChuckOpen.Strobe;
24 Delay.2000;
25 Robot. Do(CetPart);
26 PalletStops. On;
27 PalletLiftDown.Strobe;
28 Conveyor.On;
29 Delay.500;
30 Conveyor.Off;

PortC
PortC
PortA
PortA
PortC

COMI;
COM2;

PortC
PortA
PortA
PortC
PortC

PortC 6;
PortA
PortA

31 Lathestart. Strobe;
32 PalletStops. 08;
End;

Figure 9 CIM Lab CPL Program [Meghamala92]

(Note : Numbers are marked in procedure are for reference later in this report.
They are not part of the actual program)

CPL does not hide all of the hardware details. In order to use CPL, the user is still

required to know the hardware port address and bits to which each device is interfaced.

Also, the user must know the type of each device. Finally, individual cell components,

such as robots and CNC machine, will have to be programmed in their host languages. In

figure 9, the names Loadpart (line 13), MoveAway (line 17), MoveBack (line 21), and

GetPart (line 25) are files containing robot or CNC programs. The contents and creation

of these files are described in [Liwu94].

4. Ladder Logic Environment

4.1 Introduction

The primary purpose of this project is to compare RLL to CPL in order to

determine the feasibility of using RLL to program Miami's FMS cell. To do so, a RLL

programming environment was acquired that allows the cell controller PC to be

programmed using RLL. This environment is called Omega Controlware and is explained

in the next section.

4.2 Omega Controlware

Typically, ladder logic is used to control a PLC. However, in the Manufacturing

CIM Lab, a PC is used to control the manufacturing cell. Omega Controlware is a

software product that is used to allow a PC to perform the functions of a PLC

[Omega903- 19992- 1.00Rl. Omega also supports programming of the PC using ladder

logic. Thus, Omega allows the use of the PC as a ladder logic-based programmed

controller.

Omega Controlware (OC) is a preemptive multitasking operating system that

operates within a DOS environment and addresses the requirements of machine control,

process control, and cell environments. OC support operates on IBM PC or compatible

based hardware, including alternate bus-based systems.

PRO, a component of the Omega product, is an editor for the development of

Omega Controlware application programs using ladder logic. It offers a mouse-driven

interface that utilizes pull-down menus, dialog boxes, scroll bars, and multiple windows,

making application development fast and easy.

OC combines the features of some of the more popular relay ladder processor with

some unique facilities. For example, OC supports networking capabilities, multitasking,

and a wide range of data item types [Omega903- 19992- 1 .OOR].

Unlike a PLC, Omega Controlware is a set of software development tools, which

supports ladder logic programming. To use Omega Controlware, the host PC needs some

hardware support to interface with the control environment, such as a data acquisition

board, relay isolated output electronics, and optical isolated input electronics. Also, some

additional coding of a software interface between Omega Controlware and this hardware,

which is called process by Omega, is required. This will be explained below.

Figure 10 gives an overview of the various components that make up an OC

application.

APPLICATION

Figure 10 Overview of an OC Application

PRO is a state of the art editor for the development of Omega Controlware

application programs. It offers a mouse-driven interface that utilizes pull-down menus,

dialog boxes, scroll bars, and multiple windows, making application development fast

and easy. Relay Ladder, Data Table and Process will be explained below.

Application

File

Process

SYSTEM

OC Kernel

(Programmer
System BIOS Module)

I I
System Hardware

Process

Process

Date

Table Relay Ladder -

5. Implementing Omega Controlware

5.1 OC application

An OC application consists of three parts : Data tables, relay ladder logic code,

and processes. These are described below.

5.1.1 Data Tables

The data used by the relay ladder code, and all interprocess communication in OC,

is achieved through the use of a data item table, known as the data table. A wide range of

data item types are supported by OC [Omega903- 19992- 1 .OOR], including integer and

real numeric variables, string, groups, semaphores, memory and disk arrays, mailbox, and

stack. The total number and size of data items is only limited by available memory and

disk space.

Each data item is identified and referenced by a one to eight character name.

The data table corresponding to the example CPL program from Figure 9 is shown

below in Table 5.

Table 5. Example of data table

Description

' CIM Cell Control Input Model '
' Lathe Stop '
' Pallet L~fted '
' Pallet Arr~ved '
' Photo Cell '
' CIM Cell Control Output Model '
' Lathe Handshank '
' Lathe G661np '
' Lathe Running '
' CIM Cell Control Output Module '
' Pallet Stops '
' Chuck Open '
' Lathe Start '
' Chuck Close '
' Pallet Lift Up '

Alias

(CIM 1)
(La-Stop)
(P-Lifted)
(P-Arr)
(Pho-Cell)
(CIM2)
(La-Hand)
(La-G66)
(La-Run)
(CIM3)
(P-stops)
(Ch-open)
(La-start)
(Ch-close)
(P-l~ftup)

Data
Type
Ubyte

Ubyte

Ubyte

Name

port-a
4
.5
6
.7
port-b
.O
.1
.2
port-c
.O
. I
.2
.3
4

B I ~
B I ~
Bit
Bit
Blt
Word
Word
Word
Word
Word
Word
Word

enable6
enable7
t3-out
t6-out
t7-out
t~mel
t1me2
t1me3
t1me4
time5
time6
time7

' t1me6 enable '
' time7 enable '
' time3 output '
' time6 output '
' t1me7 output '
' Delay 1000 m~ll~seconds then lift Pallet up '
' Delay 1000 m~ll~seconds then get chuck close '
' Delay 2000 mill~seconds '
' Delay 2000 milliseconds then start lathe '
' Delay 2000 m~lliseconds then open chuck '
' Delay 2000 milliseconds '
' Delay 500 milliseconds '

5.1.2 Relay Ladder Logic Code

There are four types of iterns to code in a relay ladder logic application file. These
are defined in Table 6.
Title items : I Used to define a title for a application 1 I Data items : I Used to define data storage for use in the application I

Table 6. Types of items within an application.

Rung items :
Memo items :

A ladder consists of one or more rungs. The rungs in a ladder are executed from

top to bottom, starting with the root ladder which is always the topmost ladder in an

application. Every application contains one root ladder and can optionally contain any

number of named subladders.

There are a number of contact and coil types that can be used to create rungs in

OC. Some are standard to all relay ladder languages while others are unique to Omega

Controlware.

Used to define the relay ladder portion of the program
Used to place comment text into the program

Basically, a contact tests whether an integral data item contains a zero or non-zero

value. The tested data item can be a bit or a signedlunsigned byte, word, or double word.

Other data types cannot be tested as contacts. OC allows both horizontal and vertical

wires to be entered into contact fields. These wires provide connections between contacts

and coils.

The following contact types are supported in OC:

Normally Open Contact --------I I-------

Normally Closed Contact --__----I / I__---_..

Leading Edge Contact ------- 1 t 1 -------
Trailing Edge Contact --------I 1 1 -------
Not Leading Edge Contact

Not Trailing Edge Contact

A coil sets a data item to a zero or non-zero state. The data item can be a bit or a

signedlunsigned byte or word.

The following coil types are supported in OC:

Normal Coil ------- (c) -------

Latch Coil ------- (L j --------

Unlatch Coil ------- (u 1 --------

Toggle Coil ------- (T) --------

Other rung types in OC include, matrix, math, counter, timer, function, queue,

header, and call. Examples of the matrix, timer and queue types are shown below.

The Matrix Rung evaluates the truthlfalsehood of the enabling logic and

setslresets the coil(s) accordingly. The enabling logic is entered into an N row by 7

column matrix of cells, where N is a number of rows from 1 to 16. One coil can appear in

the right column of each row of the rung. An example of matrix rung is shown in Figure

11.

Figure 1 I Matrix rung

The 'matrix rung' appears to be a boolean expression with a number of variables.

An equivant example is shown below.

C= (((C2 AND L2) OR C3) AND S2) OR (C 1 AND L1 AND S 1)

The Timer Rung counts from a preset value to a limit value by 1 at a specified

rate. A timer can have any interval from 1 millisecond to 49.7 days. Each time the rung is

executed with the enabling logic true, the system checks to see if the specified interval

has elapsed. If so, the timer accumulator is incremented. If the accumulator reaches or

exceeds the limit, the LIMIT coil is activated, and the timer is disabled. A 5*4 matrix can

be divided as needed to provide both enabling and reset logic for the timer.

The Figure 12 is a sample of Timer Rung .

Figure 12 Timer rung

etimer enable

The Queue Rung will queue the named process (.exe file) for later execution if

the enabling logic evaluates true. A command line can be passed to the process. The

command line is accessed by the processes using system functions or by using the normal

high-level language facilities for accessing a DOS command line. A 5*6 matrix can be

(C) ---------

limit

------- (C) ---------

reste
(C) ---------

--------I I -----------------------------------Enable

------- AutoLoad ----

rtimer

----------I t l
--------------------------------Reset

-------Timer ----------------

accum

------Present -------

0

. .
Llmlt

10

-----Interval -------

100

used as needed to provide enabling logic for the rung. The Figure 13 is a sample of

Queue Rung.

Figure 13 Queue rung

5.1.3 Processes

Process : example
Cmd Line : file1 file:! \z
Queue ID : 0 Options : Video = NVID, he = -1

efunc

A process is an instance of an executing program plus all of the resources used by

the program. Each process is a DOS executable (.exe) file that is created by either a high-

level language compiler or an assembler. A process can be started by a queue rung in the

relay ladder or by another process.

When a process is started, it is placed into one of 256 user process queues. Within

each queue, processes are executed on a first in, first out (FIFO) basis.

--------I 1 I
.

...

Queue

Process

----------------------(

(c) -------

queued
----- (c) -------

runing
----- (c) -------

done
c)-------

errorwrd

For this project, processes had to be written to interface between OC and the data

acquisition board, the robot, and the CNC machine. This problem is described in the next

section.

5.2 RLL Code to Control the Manufacturing Cell

5.2.1 Overview

To compare the use of ladder logic using OC to CPL, a ladder logic program that

is functionally equivalent to the example CPL program in Figure 9 was developed. Using

OC to do this required the development of several modules in addition to the ladder logic

program. The architecture of these modules is shown in Figure 14.

-

discrete I70 tolfrom sensors
and actuators

Robot Controller
T

Data Acquisition Board

Serial PortiParallel Port 1
Process

.CMD files Ladder Program

1

Lathe process

CNC Lathe Controller

Figure 14 Software architecture using OC

The robot, poll, and lathe processes were written in C using Borland C++. The

ladder program was written using the OC PRO ladder logic editor. Each of these are

described below.

5.2.2 RLL Code

The complete RLL program that reproduces the functions of the CPL program in

Figure 9 is shown in Appendix A. In this section the RLL code that corresponds to each

CPL statement (or group of statements) from Figure 9 is described. Each statement is

numbered for reference.

Rung1 (CPL statement : 2 Robot.Send("NT");)

This queue rung starts the process called robot that initializes the robot's position

by sending the contents of the file nest.cmd to the robot connected to the serial port

(Figure 15). The process (robot) is a C program that was written and compiled using

Borland C++, and described in section 5.3.3.

Figure 15 Rung I

-

Process : robot
Cmd Line : nest.cmd
Queue ID : 1 Options : Video = NVID, he = -1

process2 process2

Rung 2 (No corresponding CPL statement)

-------- ...

...

This queue rung starts the process named poll that polls the acquisition board.

Process3 is output from rung1 when the robot process completes. (Figure 16)

Queue

Process

---------------T-----(

(C) em-----

----- (c) -------

process3
----- (c) -------

C)-------

Figure 16 Rung 2

Process : poll
Cmd Line :
Queue ID : 0 Options : Video = NVID, he = -1

process3

Rung 3 (CPL statement : 1 Lathe.Do(loadlath))

This queue rung starts the process named lathe that loads the lathe program from

file 1athe.cmd and then starts the conveyor running. Process3 is output from rung1 when

the robot process completes. Start is output from this rung when this rung is done (Figure

17). The lathe process is described in section 5.3.4.

(c) -------

----- (c) -------

----- (c) -------

(c) -------

--------I 1 I
.

...

Queue

Process

......................

Figure 17 Rung 3

Process : lathe
Cmd Line : 1oadlath.cmd
Queue ID : 1 Options : Video = NVID, he = -1

process3

Rung 4 (CPL statement : 7 Pa1letArrived.WaitOn;
27 PalletLiftDown.Strobe;
3, 26 PalletStops.On;)

This matrix rung turns the pallet stops on when the lathe process completes or

when pallet is down at the loading position. (Figure 18)

c)-------

----- (c) -------

start
----- (c) -------

c

--------I 1 I
- (

...

Queue

Process

----------------------(

P-ON
start p-stops -------I 1 1 (L) ----------

p-arr p-liftdw
-------I 1 --------------- 11 1 --------------- I

Figure 18 Rung 4
Rung 5 (CPL statement : 5 PhotoCell.WaitOn;

6 PalletStops.Off;)

This matrix rung turns the pallet stops off when the photocell is on or when the

whole process completes. (Figure 19)

P-OFF
pho-cell p-stops

-------I t 1 - (u)-------------

t7-out
------ 1 t 1 -----------

Figure 19 Rung 5

Rung 6 (CPL statement : 27 PalletLiftDown.Strobe;
4 or
28 Conveyor.On;)

This matrix rung turns the conveyor on when the lathe process completes or when

the Pallet lift is down at the loading position. (Figure 20)

CON-ON

start conveyor -------I 1 1 .. (L) -------

p-liftdw -------I 1 1 ---------------

Figure 20 Rung 6

Rung 7 (CPL statement : 7 PalletArrived.Wait0n;
4 PalletStops.On;
1 1 or 30 conveyor.Off;)

This matrix rung turns the conveyor off when a pallet arrives at the loading

position or when the whole process completes. (Figure 21)

Figure 21 Rung 7

Rung 8 (CPL statement : 7 PalletArrived.Wait0n;
8 Delay. 1000;
9 PalletLiftUp. Strobe;
10 PalletLifted.Wait0n;)

This timer rung delays 1000 milliseconds and then lifts the pallet up. This timer

runs when the pallet arrives at the loading position. The timer is reset when the pallet is

lifted. (Figure 22)

Figure 22 Rung 8

Rung 9 (CPL statement : 9 PalletLiftUp.Strobe;
12 ChuckOpen.Strobe;)

enable 1

p-arr p-liftup enable7 enable 1

This matrix rung opens the lathe's chuck after the pallet is lifted up. (Figure 23)

time 1

------- 1 f 1 ------- -------- [/t -------- Enable---

--------I I---

------- AutoLoad ----

p-lfted

----------I I --------------------------------Reset

------Timer ----------.----- (C) ---------

------ Present -------
0

.----- Limit
1

-----Interval -------

1000

..............................

p-liftup
------- (C) ---------

Figure 23 Rung 9

Rung 10 (CPL statement : 9 PalletLiftUp.Strobe;
13 Robot.Do(LoadPart);)

This queue rung starts the process called robot which sends the contents of the file

1oadpart.cmd to the robot connected to the serial port (Figure 24). This causes the robot to

pick up the work piece and move it to the lathe's chuck.

Figure 24 Rung 10

Process : robot
Cmd Line : 1oadpart.cmd
Queue ID : 1 Options : Video = NVID, he = - 1

p-lifted

Rung 1 1 (CPL statement : 14 Delay. 1000;
15 ChuckClose.Strobe;)

--------I t I
- (

...

This timer rung delays 1000 milliseconds and then closes the chuck on the lathe.

Process5 is output fro111 the rung 10 when the robot process completes. (Figure 25)

Queue

Process

---------------------(

C)-------

----- (c) -------

process5
----- (c) -------

C I------.

Figure 25 Rung I I

process5 ch-close enable2

Rung 12 (CPL statement : 15 ChuckClose.Strobe;
16 Delay.2000;)

- - - - - - - - I 4 1 ------------ ----------------- Enable---

enable2 I ------ { I ----

------- AutoLoad ----

ch-close

----------I I --------------------------------Reset

This timer rung delays 2000 milliseconds after the chuck is closed and before

running the next robot process. (Figure 26)

-------Timer ----------------

time2

------Present -------

0

.----- Limit
1

-----Interval -------

1000

-------,---------------------

(C) ---------

ch-close

------- (C) ---------

Figure 26 Rung 12

Rung 13 (CPL statement : 16 Delay.2000;
17 Robot.Do(MoveAway);)

This queue rung starts the process called robot to move the robot away from the

lathe. It sends the contents of the file moveaway.cmd to the robot connected to the serial

port. (Figure 27)

Figure 2'7 Rung 13

Process : robot
Cmd Line : moveaway.cmd
Queue ID : 1 Options : Video = NVID, he = -1

t3-out

Rung 14 (CPL statement : 18 Delay.2000;
19 LatheStart.Strobe;)

This timer rung delays 2000 milliseconds after moving robot away from the lathe

and then starts the lathe. Process6 is output from the rung 13 when the robot process

completes. (Figure 28)

(C) -------

----- (C) -------

process6
----- (C) -------

(C) -------

--------I t 1
.

...

Queue

Process

.....................

Figure 28 Rung 14

process6 la-start enable4

Rung 15 (CPL statement : 20 LatheStop.WaitOff;
2 1 Robot.Do(MoveBack);)

--------I 1 1- ----------- ----------------- Enable--

enable4 1 ------ f I ----

------- AutoLoad ----

la-start

- - - - I I
--------------------------------Reset

This queue rung starts the process called robot to move the robot back to the lathe.

It sends the contents of the file moveback.cmd to the robot connected to the serial port.

(Figure 29)

-------Timer ----------------

time4

------Present -------

0

.-----Limit
2

-----Interval -------

1000

..............................

(C) ---------

la-start

------- (C) ---------

Figure 29 Rung 15

Process : robot
Cmd Line : moveback.cmd
Queue ID : 1 Options : Video = NVID, he = -1

la-stop

Rung 16 (CPL statement : 22 Delay.2000;
23 ChuckOpen.Strobe;)

--------I t I - (

...

This timer rung delays 2000 milliseconds and then opens chuck. Process7 is

output from the rung 15 when the robot process completes. (Figure 30)

Queue

Process

.....................

c)-------

----- (c) -------

process7
----- (c) -------

(c) -------

Figure 30 Rung 16

process7 ch-open enable5

Rung 17 (CPL statement : 23 ChuckOpen.Strobe;
24 Delay.2000;)

This timer rung delays 2000 rllilliseconds before running the robot's next process

(Figure 3 1)

(C) ---------

ch-open

------- (C) ---------

......--I 1 .----------- ----------------- Enable---

enable5 1 ------ f I ----

------- AutoLoad ----

ch-open

- - - - I I
Reset

-------Timer ----------------

time5

------Present -------

0

.-----Limit
2

-----Interval -------

1000

..............................

Figure 3 1 Rung 17

Rung 18 (CPL statement : 25 Robot.Do(GetPart);)

This queue rung starts the process called robot to cause the robot to unload the

part by sending the contents of the file gtepart.cmd to the robot connected to the serial

port. (Figure 32)

Figure 32 Rung 18

Process : robot
Cmd Line : getpart.cmd
Queue ID : 1 Options : Video = NVID, he = - 1

t6-out

Rung 19 (CPL statement : 27 PalletLiftDown.Strobe;)

--------I 1 I ...

...

This matrix rung moves the pallet lift down. Process8 is output from the rung 18

when the robot process completes. (Figure 33)

Figure 33 Rung 19

Queue

Process

.....................

Rung 20 (CPL statement : 27 PalletLiftDown.Strobe;
29 Delay.2000;)

(C) -------

----- (c) -------

process8
----- (c) -------

(c) -------

This timer rung delays 2000 milliseconds then shuts down work cell. (Figure 34)

Figure 34 Rung 20

5.3 Interfacing Processes

Figure 14 showed the major components of the OC application developed for this

study to be the ladder program and three processes for interfacing with the I10 devices in

the cell. Currently the Automated Control System at Manufacturing Engineering Lab

consists of two Robots, one CNC Machine, Conveyor, and an Automated Storage and

Retrieval System. Some of these devices use discrete VO signals for interfacing, and the

others have to use serial or parallel communications for interfacing. The ladder logic

system supported by Omega Controlware cannot directly access the discrete VO interface

or the communications ports. However, Omega supplies some function libraries for

various high-level languages, which provide some VO functions and replace certain DOS

capabilities. External processes must then be written, using those functions to do the

required 110. These are described below.

The Omega Controlware functions let a process access the system's hardware (i.e.

serial ports) and software resources (i.e. the data table). The system functions that are

provided with OC facilitate:

Process and Thread Control

Data Item Access and Interprocess Communications

Even Handling and Timing

Console T/O

Printer Control

Serial Communication

File Handling

Error Handling

Omega Controlware provides functions and 'include' files for each of the

supported high-level languages and assembler language as well. The user can choose the

appropriate language to access the OC function. The following are some languages

supported by OC:

a IBM Basic Compiler

a Microsoft QuickBASIC Compiler

Microsoft C Compiler

a Borland C Compiler

a Borland C++ Compiler

Borland Turbo Pascal

8086 Assembler

In the following section the processes shown in Figure 14 are described.

5.3.1 Polling the Acquisition Board

There are discrete 110 signals in our control system, such as, conveyor onloff,

photo cell, lathe onloff, pallet upldown, chuck openlclose, and some position switches. A

168-Channel Universal Digital I10 Interface is used to send and receive all discrete I10

signals [OmegaDACS-1681. As was mentioned above, it is necessary to design the

interface between OC and the discrete I10 signals so OC can access these I10 signals.

This is the purpose of the poll process.

The Omega functions used in the poll process to poll and update the data

acquisition board are the following:

SF-RDATA : Read Data Table Item into Local Buffer.

SF-RDATA reads the contents of a specified data table item and places the data

into a specified output buffer.

Table 7. Summary of SF-RDATA

Parameter
i tem-s tr
size
count -
buffer

The syntax of SF-RDATA :

sfrdata(item-str, sizeof(size), &count, &buffer);

SF-WDATA : Write Local Buffer to Data Table Item.

SF-WDATA copies the contents of a local buffer to a data table item.

Type
Input String
Input uword
Output uword --
Input buffer

Description
Name or handle of data table item
Output buffer size(bytes)
Number of bytes read
- - - - - --
Point to read data buff&

Table 8. Summary of SFWDATA

Parameter
item-str
count
buffer

The syntax of SF-WDATA :

sf-wdata(item-str, sizeof(count), &buffer);

Figure 35 is the implementation for polling data acquisition board using Borland

C++.

Type
Input string
Output uword
Input buffer

Description
Name or handle of data table item
Number of bytes to write
Point of data to be written

#include "stdio. h"
#include "dos. h "
#include <stdlib.h>
#include "sf h "

#define BASE 640

unsigned char data;

void initialize-data-acquisition-board(void)
/

outportb(BASE+3,144);
outportb(BASE+ 1,255);
outportb(BASE+2,255);

/

void poll(void)
/

UB YTE port-a;
UBYTE port-b;
UB YTE port-c;
UWORD count;

//system function, reads the contents of a specified data table item and places tlze
//data into a specified output buffer

sf-rdata("port-b", sizeoflport-b), &count, &port-b);
sf-rdata("port-c", sizeofport-c), &count, &portme);

data = - port-b;
outportb(BASE+l, data);
data = - port-c;
outportb(BASE+2, data);
data = inportb(BASE1;
port-a = - data;

//system function, copies the contents of a local buffer to a data table item
sf-wdata("port-a", sizeof(port-a), &port-a);

/

main()
/

initialize-data-acquisition-board();
poll();
return 0;

/

Figure 35 The implementation for polling data acquisition board

5.3.2 Communication with Robot and Lathe

The two kinds of programmable devices in the control system are the robot and

CNC lathe which are controlled by sending programs to an appropriate interface (either a

COM or LPT port). As was mentioned before, the robot and CNC lathe have to be

programmed in their host languages. It should be noted that these commands can be

separately generated by other software, i.e., CNC commands generated by CADICAM

software, and then stored in files. This is explained more fully in [Liwu94]. Thus, the

end-user can use these files without having to deal with the low-level instructions

directly.

The processes that communicate with the robot and lathe to access a special file

written in host language commands and send those commands to either the robot or lathe

by either serial or parallel port. The process need to get the file name from the ladder

program. The Omega function SF-PAR is then used in these process to get the command

line arguments, and is described below.

SF-PAR : Get Command Line Parameter.

Table 9. Summary of SF-PAR

Parameter
parameter

command-sel

size
length
buffer

The syntax of SF-PAR :

sf-far(parameter, command-sel, sizeof(buffer), &length, buffer);

Another Omega function used is SF-WAITT which cause a delay.

SF-WAITT : Wait Time Interval.

Type
Input ubyte

Input ubyte

Input uword
Output uword
Input buffer

Description
Parameter number (1 relative, or 0 for process filespec
string)
Command line selector, where:

CL-CUR = Current process command line
CL-SYS = System process command line

Size of parameter string buffer (bytes)
Length of parameter string (bytes)
Pointer to parameter string buffer (should be 128 bytes) -

SF-WAITT causes the thread to be suspended until the specified time interval has

elapsed.

Table 10. Summary of SF-WAITT

The syntax of SF-WAITT :

sf-waitt(interva1);

Description
Time interval (milliseconds)

b

Parameter
interval

5.3.3 Robot Software Interface

Type
Input udword

The robot used in the CIM Lab is a MICRO ROBOT RM-501 (Mitsubishi

Electric Corporation) with five axis mobility. RM-501 supports several control modes

such as test mode, personal computer mode, edit mode and ROM mode. In personal

computer mode the robot can be controlled by the user via personal computer interfaces

such as parallel or serial interfaces.

All operations of the RM-501 are controlled by commands. The commands are in

a robot language similar to assembly language and make it possible for the users to

execute commands concerning robot operation and commands such as condition

evaluation. Currently, users program the various robot operations in robot language off-

line, save the commands in a file, and later, when needed to operate the robot, download

the file into the robot through either a parallel or serial port and then execute the

commands. [RM50 1, Liwu941.

Figure 36 is the process developed for communicating with the robot using

Borland C++ via the serial port.

#define SIZE 256
#define COM2 I

void initialize-serialgort(void)
{

int comgort , baud-rate, character-bit, parity, stop-bit;

corngort = COM2;
baud-rate = -COM-300;
character-bit = -COM-CHR8;
parity = -COM-NOPARITY;
stop-bit = -COM-STOPI;

- bios-serialcom(-COM-INIK comgort, baud-rate I character-bit I stop-bit I parity);
/

main()

FILE Yp;
char *ip, buffer[SIZE];
int i;
int len;
unsigned status;

UBYTE parameter;
UBYTE command-sel;
U WORD size;
UWORD length;
char bufer1[80];
initialize-serialjort();

//Get Command Line Parameter from the Cmd Line field of the queue rung.
//The Cmd Line field specifies a command line string to be passed to the process.
//This command line can be accessed by the process in the same manner that a
//program started under DOS can access a conzmand line, in C the argc and argv
//variables can be used. In all languages, the SF-PAR(get command line
//parameter) system functions can be used to access tlze command line.
parameter = I;
command-sel = CL-CUR;
sfjar(paranzeter, command-sel, s izeof lb~~fer l) , &length, bufer l) ;

// Open the specifiedfile
if((& = fopen(bufer1, "r")) == NULL)

{
prinff('77file %s cannot be operled bt ", bufferl);
exit();

I'

//Process the contents of tlze specified file and transfer them to RS-232C port
fgets(buffer, SIZE, fp);

while (!feof(fp))
I

/* skip leading blanks */
for(@ = buffer; *ip == ' ' && *ip != V'; ip++);
strcyy(buffer, ip);
len = strlen(buffer);
bufferllen-I] = "v';
buffer[len] = %';
buffer(lerz+ I] = 10';

status = bios-serialcorn(-COM-STATUS, COM2, 0);
$(status & 0x2000)
f

- bios-serialcorn(-COM-SEND, COM2, buffer[i]);
break;

/
/

/
fgets(buffer, SIZE, fp);

/
fclose(fp);
return 0;

I

Figure 36 The implementation for communicating with robot

5.3.4 CNC Machine Software Interface

The CNC machine we used at CIM Lab is EMCO COMPACT 5 CNC Lathe. The

CNC Lathe comes with two accessories : DNC-Interface and RS-232C-Interface,

The DNC-Interface is a proprietary interface consisting of some special

instructions and status, by which the CNC could be controlled by an external computer .

The DNC-Interface specification is shown below in the Table 1 1.

Table 1 1. DNC-Interface specification

X62lPIN

In this project, the DNC-Interface is used to control the CNC Lathe working from

the independent computer instead of at the CNC 5. Currently, the PIN3 (Instruction G66

+ INP) and PIN17 (Instruction start) were used in our control system. The instruction

G66 + INP (PIN3) was used to set the RS232C mode so that the lathe program can be

downloaded into the lathe, and the instruction start is used to start the lathe working.

Figure 37 is the process used to communicate with the CNC machine using the

serial interface.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
2 1
22
23
24
25
26

A
E
E
-

-

E
A
A
E
-

-
-

-

-

A
-

E
A
A
A
E
V
V
V
V
V

Status hand
Turret - hand operation
Instruction G66 + INP
-

- -- - - - -

-

Instruction G66 + FWD
Status program running
Status intermediate stop
Instruction switch hand I CNC
-
-
-

-

-

Output set with M8, M9
-

Instruction start
Output set with M22, M23
Status main motor ONIOFF
Output impulse set with M26
Instruction blockage-turret
+1OV not controlled
GND
GND
GND
+5V controlled

#define SIZE 256
#define BASE 640
#define COMI 0

void initialize-serialjort(void)

int conzgort, baud-rate, character-bit, parity, stop-bit;

comgort = COMI;
baud-rate = -COM-300;
character-bit = -COM_CHR8;
parity = -COM-NOPARITY;
stop-bit = -COM-STOPI;

- bias-serialcom(-COM-INIT, comjor t , baud-rate I character-bit I stop-bit I parity);
1

void set-lathe-mode(void)
/ /Set the lathe working mode as RS-232C via DNC-Interface by sending instruction G66 + ZNP
(

unsigned char data, bit, mask;
/* lathe handshake */
printf("Do lathe handshake\nU);
//Set port B, bit 0
data = inportb(BASE+I);
data = - data;
bit = 0;
mask = 1 << bit;
data = data I mask;
data = - data;
outportb(BASE+I, data);

//Causes the thread to be suspended until the specified time interval has elapsed
// Under the OC, some certain DOS capabilities such as delay function in C have
// to replace by OC system function.
sf-waitt(25OL); /* delay for 250 milliseconds */

//Reset port B, bit 0
data = inportb(BASE+l);
data = - data;
bit = 0;
mask = I << bit;
mask = - mask;
data = data & mask;
data = - data;
outportb(BASE+I, data);

/* lathe G66inp */
sf-waitt(100L); /* delay 100 milliseconds */
printj("D0 lathe G66inph");

/ /Set port b, bit I
data = inportb(BASE+I);
data = - data;
bit = I ;
mask = 1 << bit;
data = data I mask;
data = - data;
outportb(BASE+I, data);

~f-wnitt(800L); /* delay 800 milliseconds */

//Reset port B, bit I */
data = inportb(BASE+l);
data = - data;
bit = I ;
nzask = I < < bit;
mask = - mask;
data = data & mask;
data = - data;
outportb(BASE+ 1, data);

/

muin()
I

FILE *fp;
char *ip, buffer[SIZE];
int len;
int i;
int len;
unsigned status;

UBYTE parameter;
UBYTE command-sel;
UWORD size;
UWORD length;
char bu.erl[80/;

//Get Command Line Parameter from the Cmd Line field of the queue rung.
//The Cmd Line field specifies a command line string to be passed to the process.
//This command line can be accessed by the process in the same manner that a
//program started under DOS can access a command line, in C the argc and argv
//variables can be used. In all languages, the SF-PAR(get command line
//parameter) system functions can be used to access the command line.
parameter = I ;
command-sel = CL-CUR;
sfjar(parameter, command-sel, sizeof(bufferI), &length, bufferl);

// Open the specified file
i f (@ = fopen(buffer1, "r")) == NULL)

{
p r i n t f v f i l e %s cannot be opened \nu, bufferl);
exit();

//Process the contents of the specified@ and transfer them to RS-232C port
fgets(bu#er, SIZE, fp);
while (!feof(fP))

I
Een = strlen(bufler);

buffer[30] = G';
buffer[31] = 2n';
buffer[32] = 20';

for(i = 0; i < 32; i++)

I
for(; ; I

status = -bias-serialcorn(-COM_STATUS, COMI, 0);
if(sratlu & 0x2000)
I

- bios-serialcorn(-COM-SEND, COMI, bu#er[i]);
break;

I
I

I
fgets(buffer, SIZE, fp);

I
fclose(fp);
return 0;

I

Figure 37 The implementation for communicating with CNC machine

5.3.5 Communication with Automated Storage and Retrieval System

The Amatrol Automated storage and Retrieval system (ASIRS) is designed to feed

automated manufacturing systems. The 862-ASIRS is capable of operating in two modes;

one using discrete 110 signals for interfacing, and the other using communications for

interfacing [AMATROL9 11.

The communications mode of the 862-ASIRS is for applications in computer

integrated manufacturing (CIM) where real time storage and retrieval is needed. This

mode allows an external controller to request the storage or retrieval of a specific type of

part.

The storagelretrieval commands are transmitted to and from the 862-ASIRS using

2400 BAUD, 8 data bits, 1 stop bit and no parity. The communication port is a standard

RS-232 serial port using pins 2 (transmit), 3 (receive) and 7 (ground). The port does not

use hardware handshaking.

The software interface needed to communicate to ASIRS through Omega

Controlware is very similar to communication with the robot and CNC machine. A

possible process is shown in the Figure 38.

#define SIZE 256
#define COM2 1

void initialize-serialgort(void)
{

int comgort, baud-rate, character-bit, parity, stop-bit;

comgort = COM2;
baud-rate = -COM-2400;
character-bit = _COM_CHR8;
parity = -COM-NOPARITY;
stop-bit = -COM-STOP];

- bios-serialcom(-COM-INIT comjort , baud-rate I character-bit I stop-bit I parity);
I

main()
{

FILE *fp;
char *ip, buffer[SIZE];
int i;
int Len;
unsigned status;

UBYTE parameter;
UBYTE command-sel;
UWORD size;
UWORD length;
char buflerl(801;
initialize-serialport();

//Get Command Line Parameter from the Cmd Line field of the queue rung.
//The Cmd Line field specifies a command line string to be passed to the process.
//This command line can be accessed by the process in the same manner that a
//program started under DOS can access a command line, in C the argc and argv
//variables can be used. In all languages, the SF-PAR(get command line
//parameter) system functions can be used to access the command line.
parameter = 1;
command-sel = CL-CUR;
sfgar(parameter, command-sel, sizeof(bufferl), &length, buffer]);

//Open the specifiedfile
i f (@ = fopen(buffer1, "r")) == NULL)

printf('27file %s cannot be opened b", buflerl);
exit();

I

//Process the contents of the specifiedfile and transfer them to RS-232Cport
fgets(bufler, SIZE, fp);

while (!feof(f))
I

len = strlen(buffer);
for(i = 0; i < len+l; i++)

I
for(; ;I
l'

status = -bias-serialcorn(-COM-STATUS, COM2, 0);
$(status 6; 0x2000)
I

- bios-serialcorn(-COM-SEND, COM2, bufferii]);
break;

I
I

I
fgetdbuffer, SIZE, fp);

/
fclose (fp);
return 0;

I

Figure 38 The Possible Interface Implementation for the AS/RS

6. Comparison of Ladder Logic language vs CPL

6.1 Strengths of RLL over CPL

The RLL is a graphic language, based on one of the programming standards

(Language LD). There are a number of professional technicians dealing with this

language and there are many RLL software development tools available today, like

Omega Controlware.

The versatility of the RLL enables it to be used in the control of a wide range of

machines and various applications such as oil refinery control, traffic control, machine

control, effluent flow, packaging line control, etc. RLL-based programmable controllers

have been replacing old-style relay logic with increasing rapidity for more than a decade

until today they have rendered relay logic obsolete. It is the most widely used and

accepted industrial control language [Pessen89].

There are some unique strengths for Omega Controlware. Basic to the design and

use of Omega Controlware are multitasking and shared data. The multitasking

capabilities of OC are unique because the system was specifically designed to support the

needs of control applications rather than the general purpose needs of data processing.

The data sharing capabilities of Omega Controlware are very similar to the capabilities of

many conventional multitasking systems but with some extensions dictated by the

inclusion of networking and global 110 within a control environment. Also, Omega can in

real time monitor the status of all work cells in the control system.

CPL lacks the ability to scan more than one input at a time. Its procedure is a strict

sequence of operations. For example, while CPL is waiting for an input from a sensor, all

other 110s are ignored. This means that CPL cannot wait for two or more events

concurrently and reacts to the one that comes first. This is in contrast to RLL which can

concurrently scan multiple inputs and react to them as they occur.

There are some differences in structure between a RLL program and CPL. For

example, in Figure 18, one RLL rung combines several CPL steps and it is easy to find all

conditions that turns on the pallet-stop. In Figure 9, pallet-stop statements have to spread

out in lines 3 and 26 by CPL.

6.2 Weaknesses of RLl using OC

In reality RLL is not standardized. Each PLC manufacturer has implemented RLL

in different ways. Thus RLL programs are not portable and programmers must be

retrained when using different PLCs.

Large RLL programs become difficult to understand and follow because the RLL

language is unstructured and the quality of RLL programming depends on some

experience in a control environment.

To use Omega Controlware, besides RLL code, it is necessary to implement some

custom software to interface with the data acquisition board, the robot and lathe in a

language such as C. Also, some OC system functions replace certain DOS capabilities. In

such cases it is necessary to use an OC system function. For example, the Borland C++

compiler has a function called delay that suspcnds execution for a n interval

(milliseconds). If this function is needed, it must be replaced with an OC system function

called WAITT. It would not be feasible for most FMS programmers to be expected to

learn the C language and Omega functions to write such interface programs.

In comparison to RLL, a simple CPL program is much easier to read and modify.

There are some weaknesses in RLL structure compared to CPL. For example, in Figure 9

it is easy to see in line 26 all steps (1-25) that have been executed, but in RLL Appendix

A this is not obvious. Also, in programming RLL the code needs an extra input condition

to control the sequence of operations, whereas in CPL it is implicit that one step follows

the next step. For example, in Figure 18, RLL requires one more input condition (start) to

control the sequence of the operations that follow.

7. Conclusion

This project demonstrated that RLL can be used to replace CPL as a programming

language in the Manufacturing Engineering CIM Lab. The RLL code based on Omega

Controlware has been successfully tested for correctness.

We could further develop our control system and add more workcells in FMS

such as Amatrol Automated Storage and Retrieval System, Robot Vision System etc.

With the feature of mutiltasking and networking of OC we could in real time load various

programs, which are written in the host command languages such as Robot and CNC

machine, from some remote machine into the device controller.

Compared to CPL, Omega Controlware has some advantages and disadvantages.

With the PRO, a state of the art editor for the development of Omega Controlware RLL

programs, it is easily to program RLL code once the user is trained in RLL. Students of

the Department of Manufacturing engineering should be familiar with RLL, the most

popular control language in manufacturing engineering. However, training in RLL takes

more time than learning CPL, since CPL is much easier to read and understand. A major

advantage to using RLL is that it supports scanning of many simultaneous inputs, which

CPL does not support. Thus, sophisticated control programs can be written in RLL but

not in CPL. However, to use Omega Controlware, technical support is required to

maintain the external interface processes and to develop new interface processes when

these become necessary. This requirement may be a significant obstacle for continued use

of Omega. Table 12 summarizes the strengthes and weaknesses of CPL vs RLL.

Table 12 Summarization of CPL and RLL

Characteristic

Ease of learning

Ease of programming

Ease of adding new elements

Ease of modification

Technical support

Real-time

Sophisticated system control

Standard industrial control languages

Mutiltasking & networking

Portable

Additional external programming

PC memory

Needed programming skills

CPL

Easier

Easier

Easier to modify

None

Slower

Weak

Not standard

None

CPL not portable

Not required

CPL only

Omega RLL

More capabilities

Commercial product

Faster execution

More capabilities

Use of RLL

Supports both

RLL may be portable

Required

Requires more RAM

Knowledge of RLL

and C

References

[ALLEN-BRADLEY871 User's manual, Bulletin 1745, SLC Programmable Controllers,
Publication 1745-800-November, 1987.

[AMATROL9 11 AMATROL 862-ASIRS Communication Protool.

[Chaar90] Chaar, J. K. A Methodology for Developing Real-Time Control Software for
Efficient and Dependable Manufacturing Systems, Ph.D Dissertation, University of
Michigan, 1990

[Benhabib89] Benhabib, B., Chen, C.Y., Johnson, W.R., An Integrated Manufacturing
Work Cell Management System, Manufacturing Review Vol2, No 4, December 1989.

[EMCO114004] EMCO Compact 5 CNC Software A6C 114004.

[IEC 1 13 1- 11 Project CEI 1 13 1-3 : Automates programmables, IEC DIS 1 13 1-3.

[Martin891 Martin, J.M. (1989), Cells drive manufacturing strategy, Manufacturing
Engineering, January, 49-54.

[Meghamala92] Development of an Object-Oriented High-Level Language and
Construction of an Associated Object-Oriented Compiler, working paper #92- 105,
System Analysis Department, Miami University, Oxford, Ohio, 1992.

[Meghamala92] Meghamala, N., "Development of an Object-Oriented High-Level
Language and Construction of an Associated Object-Oriented Compiler", Technical
Report, Systems Analysis Department, Miami University, 1992.

[OmegaDACS- 168) Omega, Data Acquisition and Control System, 168-Channel
Universal Digital 110 Interface for IBM PCIXTIAT.

[Omega903- 19992- 1.00RI Omega Controlware User's Guide, Document Number 903-
19992- 1.00R.

tOmega903- 19992- 1.09V1 Omega Controlware reference Guide, Document Number 903-
19992- 1.09V.

[Pessen89] D. W. Pessen, Ladder-diagram Design for Programmable Controllers,
Automatics, Vol. 25, No. 3, pp. 407-412, 1989.

[RM501] RM501 Manual, Mitsubishi Electric Corporation.

Appendix A Complete RLL Program Using Omega Controware

Use OMEGA Controlware to control t h e CIM cell

Friday, May 12, 1995 6:06 pm

Mark 11. Ma
Systems Analysis
Miami University

Lathe : COMl
Robot : COM2

STATION\\C:\OC\test6.oc
Friday. May 12. 1995 6:06 pm
Use OMEGA Controlware to control the CIM cell

Table of Contents

Application File Listing ... 1
Root Ladder .. 1

Items 1-5 .. 1
Items 6-18 ... 2 .. Items 19-31 3 .. Items 32-33 4
Items 34-35 ... 5
Items 36-38 .. 6 .. Items 39-40 7
Items 41-42 .. 8 .. Items 43-44 9
Items 45-46 .. 10
Items 47-48 .. 11
Items 49-50 .. 12
Items 51-52 .. 13

Ladder Directory .. 14
Item Directory ... 15
Name Directory .. 19

STATION\\C:\OC\test6.oc
Friday, May 12, 1995 6:06 pm
Use OMEGA Controlware to control the CIM cell

Page 1
Root Ladder Items 1-5

Title 1
Use OMEGA Controlware to control the CIM cell
Mark H. Ma
Systems Analysis
Miami University
Lathe : COM1
Robot : COM2

Data 2
Ubyte port - a (CIM1) CIM Cell Control Input Module

.O

.1

.2

.3
- 4 (La Stop) lathe Stop
.5 (P Lifted) Pallet Lifted I

.6 (P ~ r r) Pallet Arrived

.7 (PLO - Cell) Photo Cell

Data 3
Ubyte port-b (CIM2) ' CIM Cell Control Output Module

. O (La hand) Lathe Handshank
-1 (~a-~66) Lathe G66inp
.2 (~a-~un) - lathe Running
. 3
.4
.5
.6
.7

Data 4
Ubyte port - c

.O

.1

.2

. 3

. 4

.5

.6

.7

(CIM3) CIM Cell Control Output Module
(P-sto~s 1 Pallet Stops
(Ch open) Chuck Open
(~a-start) Lathe Start
(~h-close) Chuck Close
(P liftup) Pallet Lift Up
(conveyor) Conveyor
(P - liftdw) Pallet Lift Down

Data 5
Bit process2 Run process robot (nest.cmd)

;TATION\\C:\OC\testG.oc
Friday, May 12, 1995 6:06 pm
Jse OMEGA Controlware to control the CIM cell

lata 8
3it process5

lata 9
3it process6

lata 11
Bit process8

Data 12
Bit process9

Data 13
Bit start

Data 14
Bit enable1

Data 15

Bit enable2

Data 16
Bit enable3

Data 17

Bit enable4

Run process lathe1

Page 2
Root Ladder Items 6-18

Run process poll

Run process robot (loadpart-cmd)

Run process robot (moveaway.cmd)

Run process robot (moveback.cmd)

Run process robot (getpart.cmd)

Run process reset

start conveyor running

time1 enable

time2 enable

time3 enable '

time4 enable

Data 18
Bit enable5 time5 enable

TATION\\C:\OC\test6,oc
'riday, May 12, 1995 6:06 pm
'se OMEGA Controlware to control the CIM cell

lata 19

lit enable6

)ata 20

)it enable7

)ata 21

3it t3 - out

Iata 22

3it t6-out

>ata 23

3it t7 - out

lata 24

lata 27
FJORD time3

Data 28

Data 29
#ORD time5

Data 30
WORD time6

Data 31
WORD time7

Page 3
Root Ladder Items 19-31

time6 enable '

time7 enable

time3 output

time6 output '

time7 output, shut down machine

Delay 1000 miliseconds then lift Pallet up

delay 1000 miliseconds then get chuck close

delay 2000 miliseconds

delay 2000 miliseconds then start lathe

delay 2000 miliseconds then open chuck

delay 2000 miliseconds

delay 500 miliseconds

STATION\\C:\OC\test6.oc
Friday, May 12, 1995 6:06 pm
Use OMEGA Controlware to control the CIM cell

Page 4
Root Ladder Items 32-33

Rung 32
This queue rung starts the process that initializes the 1/0 ports
and start the process that load lathe's program

I I
I Process: robot5 I
I Cmd Line: nest-cmd

Options: Video = NVID, he = -1
I

I Queue ID: 1 I
I I
I process2 process2 1
1---1/1---+---------+---------+---------+---------+---------+--------- +-- (L) --- 1
I I I I
I + + + + + I I I
I + Queue +- - (C) - - - I
I I I I
I I 1process31
I + + + + + + Process +-- (c) --- 1
I I I I
I + + + + + I

+---------
I I

I +-- (C) --- 1
I I I
I + + + + + I

+------------------
I

I
process2 'Run process robot (nest-cmd)

I

process3 'Run process lathe1

Rung 33

This queue rung starts the process that communicates with Omega software

I
I Process: poll

I

I Cmd Line:
I

I Queue ID: 0 Options: Video = NVID, he= -30000
I
I

I
I process3

I
l---lvl---+---------+---------+---------+---------+---------+--------- I +-- (C) --- 1
I I I I
I + + + + + I I I
I + Queue +- - (C) - - - I
I I I I

I
I + + +
I
I
I + + +
process3 'Run process lathe1

I I I
+ Process +-- (C) --- 1
I I I
+--------- +-- (C) --- 1
I I

;TATION\\C:\OC\test6.oc
priday, May 12, 1995 6:06 pm
Jse OMEGA Controlware to control the CIM cell

Page 5
Root Ladder Items 34-35

tung 34

'his queue rung starts the process that initializes robot's position

I
Process: lathe1 1

1 Cmd Line: 1oadlath.cmd I
/ Queue ID: 1 Options: video = NVID, he = -1 I
I I
I process3
I---/vI---+--------'+----"----+---------+---------+---------+---------+--------- I +-- (C) --- 1
I I I I
I + + I I + + I
I + + Queue +--(C) ---I
I I I I
I I jstart]
I + + + + + + Process +-- (C) --- 1
I I I I
I + + + + I

+---------
I I

I + +-- (C) --- 1
I I I
I + + + + I

+ +------------------
I

I I
process3 'Run process lathe1
start 'start conveyor running

Rung 35

This matrix rung turns pallet stops on

IP - ON I
I I
1 start
I---lvI---+---------+---------+---------+---------+---------+--------- p-stops I +-- (L) --- 1
I I I
I P-arr p-liftdw I
! - - - I I---+--- + + + + + I

I v I ---+
'Pallet Arrived

I
p-arr
p-liftdw 'Pallet Lift Down
p-stops 'Pallet Stops
start 'start conveyor running

TATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

Page 6
Root Ladder Items 36-38

his matrix rung turns pallet stops off

P OFF -

pho-cell
---lAl---+---------+---------+---------+---------+---------+---------

p-stops I +-- (U) --- 1
I I

I

I I

t stops 'Pallet Stops '
)KO cell 'Photo Cell '
:7 - out 'time7 output, shut down machine

lung 37

'his matrix rung turns conveyor on

CON - ON
I
1 start conveyor 1
/---1v\---+---------+---------+---------+---------+---------+--------- +--(I,) --- I
I I I

I

. .
zonveyor 'Conveyor '
? - liftdw 'Pallet Lift Down '
start #start conveyor running

Rung 38

This matrix rung turns conveyor off

/ CON-OFF
I I

I P-arr p-stops conveyor 1 I---lAl---+---l/l---+---------+---------+---------+---------+--------- +-- (u) --- 1
I I I
1 t7 - out
1 - - - 1 ^I---+--------- I + . .
conveyor 'Conveyor
P-arr 'Pallet Arrived '
p-stops 'Pallet Stops
t7 - out 'time7 output, shut down machine

rATION\\C:\OC\test6.oc
riday, May 12, 1995 6: 06 pm
;e OMEGA Controlware to control the CIM cell

Page 7 1
Root Ladder Items 39-40

his timer rung delays 1000 miliseconds then gets pallet up

p-liftup enable7 enable1 /
I---+---------+---I/I---+---//l---+--Enable--------- Timer------- +-- (c) --- 1

I I time1 I I
enablel --- I I---+--------- I + I I - - - - - - - Preset------ I I

+ + I I
I 0 I I
I

Limit-------
Ip-liftupl

+ + + +-AutoLoad+------- +-- (C) --- 1
I 1 I I
I I ------ I I

+ + + + Interval----- I I
I 1000 I I

p-lifted
---I I---+---------+---------+--------- I +--Reset----------------------

I + I
I

mabiei 'time1 enable
~nable7 'time7 enable '
I arr 'Pallet Arrived
,-lifted 'Pallet Lifted ' --

)-lift~~ - 'Pallet Lift Up I

:ime1 'Delay 1000 miliseconds then lift Pallet up

lung 40

'his matrix rung open the lathe's chuck

I
1 I
j p-lifted ch - open I
l---lAl---+---------+---------+---------+---------+---------+--------- +-- (C) --- 1
:h open 'Chuck Open
? - lifted 'Pallet Lifted

;TATION\\C:\OC\testG.oc
rriday, May 12, 1995 6:06 pm
Jse OMEGA Controlware to control the CIM cell

Page 8
Root Ladder Items 41-42

'his queue rung starts the process in which robot loads part

Process: robot5
Cmd Line: loadpart-cmd

, Queue ID: 1 Options: video = NVID , he = -1
I
I

/ p-lifted
l---lAl---+---------+---------+---------+---------+---------+---------

I +-- (C) --- 1
I I I I
I

I
I
I
I
I
I
I
I
I
I
I
p lifted
process5

+ + + + +
'Pallet Lifted
'Run process robot (1oadpart.cmd)

I I I
+ Queue +--(C)---I
I I I
I Iprocess51
+ Process +-- (C) --- 1
I I I
I
+-------.--

I I +-- (C) --- 1
I I
I
+------------------

I
I

Rung 42

rhis timer rung delays 1000 miliseconds then gets chuck close

I

I process5 ch - close enable2 I
I---lvl---+---------+--- I/[---+--------- +--Enable--------- Timer------- +-- (c) --- 1
I I I time2 I I
1 enable2
I---! I---+--------- I I I I

Preset------ + + + I I I -------
I I 0 I I
I I I ch __ close1
I + + + +-AutoL~ad+------- Limit------- +-- (C) --- 1
I I 1 I I
I I I I
I + + + + I ------ Interval----- I I
I I I I 1000
ch close I - I I---I I---+---------+---------+---------+--Reset---------------------- I + I

I
ch close 'Chuck Close
enable2 'time2 enable
process5 'Run process robot (loadpart. cmd)
time2 'delay 1000 miliseconds then get chuck close

;TATION\\C:\OC\test6.oc
?riday, May 12, 1995 6:06 pm
Jse OMEGA Controlware to control the CIM cell

Page 9
Root Ladder Items 43-44

Chis time rung delay 2000 miliseconds in order to run robot's process

I I
ch close I - t3 - out enable3 I
I---lvl---+---------+--- I/l---+---------+--Enable--------- Timer------- +-- (c) --- 1
I I I time3 I I
1 enable3 I---[I---+--------- I + I

Preset------
I I + + I ------- I

0
I

I I I I
I I It3 - out I
I + + + +-AutoLoad+------- Limit------- +-- (C) --- 1
I I 2 I I
I + I I ------ I I
I + + + Interval----- I I

1000 I I I I
It3 - out I I - - - I I---+---------+---------+---------+--Reset----------------------

I + I
ch close 'Chuck Close

I
engble3 'time3 enable
t3 out 'time3 output '
time3 'delay 2000 miliseconds

Rung 44

This queue start the process that moves robot away

I
I Process: robot5
I Cmd Line: moveaway.cmd
I Queue ID: 1 Options: video = NVID, he = -1
I

I I I
+ Queue +--(C)---I
I I I
I Iprocess61
+ Process +-- (C) --- 1
I I I
I
+---------

I I +-- (C) --- 1
I I
I
+------------------

I
I

process6 'Run process robot (moveaway.cmd)
t3 - out 'time3 output I

;TATION\\C:\OC\test6.oc
?riday, May 12, 1995 6:06 pm
Jse OMEGA Controlware to control the CIM cell

Page 10
Root Ladder Items 45-46

rhis timer rung delay 2000 miliseconds then start lathe

I I
1 process6 la - start enable4 I
I---lvl---+---------+--- I/[---+--------- +--Enable--------- ~ i ~ ~ ~ - - - - - - - +-- (c) --- 1
I I I t ime4 I I
1 enable4 I--- I I---+--------- I I I I

Preset------ + + + I I I -------
I I 0 I I
I I Ila-start1
I + + + +-AutoLoad+------- Limit------- +-- (C) --- 1
I I 2 I I
I I I I I ------ Interval----- I + + + + I I
I I 1000 I I
// la-start 1
]---I I---+---------+---------+---------+--Reset----------------------

I
-I-

I
I

enable4 'time4 enable '
la-start 'Lathe Start
process6 'Run process robot (moveaway.cmd)
time4 'delay 2000 miliseconds then start lathe

Rung 46

This queue rung start the process that move robot back

I
I Process: robot5

I
I Cmd Line: moveback.cmd

I
Options: video = NVID, he = -1

I
I Queue ID: 1 I
I I
Ila - stop
l---lAl---+---------+---------+---------+---------+---------+--------- I +-- (C) --- 1
I I I I

I I I
+ Queue +--(C)---I
I I I
I Iprocess71
+ Process +-- (C) --- 1
I I I
I
+---------

I I +-- (C) --- 1
I I
I
+------------------

I
I

la stop 'lathe Stop
process7 'Run process robot (moveback.cmd)

TATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
'se OMEGA Controlware to control the CIM cell

Page 11
Root Ladder Items 47-48

'his timer rung delay 2000 miliseconds then open chuck

process7 ch - open enable5 I
---(~l---+---------+---I/I---+---------+--Enable---------Ti~~r------- +-- (c) --- 1

I I t ime5 I I
I I I + I ------- Preset------ I I
I 0 I I
I

+-AutoLoad+-------Limit-------
I ch-open I +-- (C) --- 1

I 2 I I
I I ------ I

Interval-----
I + I I

I 1000 I I I
ch open I -

I --- I
I I---+---------+---------+---------+--Reset----------------------

I I + I I I I

zh open 'Chuck Open
3nable5 'time5 enable
?rocess7 'Run process robot (moveback. cmd)
time5 'delay 2000 miliseconds then open chuck

Rung 48

This timer rung delay 2000 miliseconds in order to run robot

I
ch open I I---lAl---+---------+---l/l---+---------+--Enable---------Timer------- - t6 - out enable6 1 +-- (C) --- 1

I I I time6 I I
1 enable6
I --- I I---+--------- I I I I I - - - - - - - Preset------ + + + I I
I I 0 I I
I I It6 out I -
I + + + +-AutoL~ad+------- Limit------- +-- (C) --- 1
I I 2 I I
I I I ------ Interval----- I I
I + + + + I

1000
I

I I I I
It6 - out I
1 - 1 I---+---------+---------+---------+--Reset---------------------- I + I
ch open 'Chuck Open

I
enable6 'time6 enable
t6 out 'time6 output
time6 'delay 2000 miliseconds

Friday, May 12, 1995 6:06 pm
Jse OMEGA Controlware to control the CIM cell

Page 12
Root Ladder Items 49-50

Rung 49

rhis queue rung start the process in which robot gets part

I
I Process: robot5

I

I Cmd Line: getpart-cmd
I

I Queue ID: 1 Options: video = NVID, he = -1
I
I

I I
I t6-out
1---1v1---+---------+---------+---------+---------+---------+---------

I +-- (C) --- 1
I I I I

I
process8
t6 - out

+ + + + +
'Run process robot (getpart.cmd)
'time6 output

I I I
+ Queue +--(C)---I
I I I
I /process81
+ Process +-- (C) --- (
I I I
I
+---------

I I +-- (C) --- 1
I I
I
+------------------

I
I

Rung 50

This matrix rung gets pallet down

I I
I I
I process8 p-liftdwl
I---lvl---+---------+---------+fffffff--+---------+---------+--------- +-- (C) --- 1
p-liftdw 'Pallet Lift Down
process8 'Run process robot (getpart.cmd)

TATION\\C:\OC\test6.oc
'riday, May 12, 1995 6:06 pm
'se OMEGA Controlware to control the CIM cell

Page 13
Root Ladder Items 51-52

'his timer rung delay 2000 miliseconds then shut down machine

I
I

p-liftdw t7 - out enable7 I
---IvI---+---------+--- I/l---+---------+--Enable--------- Timer------- +-- (c) --- 1

I I time7 I I
enable7
---I I---+--------- I I I I

Preset------ + + + I I I -------
I 0 I I
I It7 - out / + + + +-AutoLoad+------- Limit------- +-- (C) --- 1
I 2 I I
I / ------ Interval----- I I + + + + I

1000
I

I I I
t7-out I I I
- 1 I---+---------+---------+---------+--Reset---------------------- + I
mable7 'time7 enable '
3 - liftdw 'Pallet Lift Down '
27 out 'time7 output, shut down machine
2ihe7 'delay 500 miliseconds '

I
I Process: reset
I Cmd Line:
I Queue ID: 1 Options: Video = NVID, he= -1
I
It7 - out
1---lAl---+---------+---------+---------+---------+---------+---------

I +-- (C) --- 1
I I I I
I

I I I I
I + + + + + + Queue +--(C) ---I
I I I I
I I I I
I + + + + + + Process +-- (C) --- 1
I I I I
I I I

+---------
I

I + + + + + +-- (C) --- 1
I I I
I I

+------------------
I

I + + + + + I
t7 - out 'time7 output, shut down machine '

TATION\\C:\OC\testG.oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

adder Position Items Description/Parameters ----- -------- ----- ___---__-_-________---
oot 1 <pl> 52

Page 14
Ladder Directory

ladder found.

TATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

itle 1 Root

ata 2 Root

(ciml)
.4 (la-stop)

.7 (pho-cell)

)ata 3 Root

(cim2)
.O (la-hand)
.1 (la-g66)
.2 (la-run)

Iata 4 Root

-1 (ch-open)

.2 (la - start)

.3 (ch-close)

.4 (p-liftup)

.5 (conveyor)

Data 5 Root

Application title <pl>

Unsigned byte port a <pl>
'CIM Cell Control Input Module

'lathe Stop
Read Root Rung 46 <p10>

Page 15
Item Directory

'Pallet Lifted
Read Root Rung 39 [P UP] <p7>,

Rung 40 <p?>, Rung 41 <p8>
'Pallet Arrived
Read Root Rung 35 [P ON] <p5>,

Rung 38 [CON OFF] <p6>,
Rung 39 [P-UP] <p7>

'Photo Cell
Read Root Rung 36 [P-OFF] <p6>

Unsigned byte port b <pl>
'CIM Cell Control Output Module

'Lathe Handshank
'Lathe G66inp '
'lathe Running '

Unsigned byte port c <pl>
'CIM Cell Control Output Module

'Pallet Stops '
Read Root
Write Root

'Chuck Open
Read Root
Read/write Root
Write Root
'Lathe Start '
Read/write Root
'Chuck Close
Read Root
Read/write Root
'Pallet Lift Up
Read/write Root
'Conveyor
Write Root

'Pallet Lift Down
Read Root

Write Root

Rung 38 [CON-OFF] <p6>
Rung 35 [P ON] <p5>,
Rung 36 [PIOFF] <p6>

Rung 48 <pll>
Rung 47 <pll>
Rung 40 <p7>

Rung 45 <p10>

Rung 43 <p9>
Rung 42 <p8>

Rung 39 [P-UP] <p7>

Rung 37 [CON ON] <p6>,
Rung 38 [CON-OFF] - <p6>

I

Rung 35 [P ON] <p5>,
Rung 37 [CON ON] <p6>,
Rung 51 <p137
Rung 50 <p12>

Bit process2 <pl> 'Run process robot (nest.cmd)
Read/write Root Rung 32 <p4>

rATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

Page 16
Item Directory

ata 6 Root Bit process3 <p2> 'Run process lathe1
Read Root Rung 33 <p4>, Rung 34 <p5>
Write Root Rung 32 <p4>

ata 7 Root Bit process4 <p2> 'Run process poll

ata 8 Root Bit process5 <p2>
'Run process robot (1oadpart.cmd)
Read Root Rung 42 <p8>
Write Root Rung 41 <p8>

ata 9

Iata 14

>ata 15

lata 16

lata 17

3ata 18

3ata 19

Data 20

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Bit process6 <p2>
'Run process robot (moveaway.cmd)
Read Root Rung 45 <p10>
Write Root Rung 44 <p9>

Bit process7 <p2>
'Run process robot (moveback.cmd)
Read Root Rung 47 <pll>
Write Root Rung 46 <p10>

Bit process8 <p2> "Run process robot (getpart.cmd) '
Read Root Rung 50 <p12>
Write Root Rung 49 <p12>

Bit process9 <p2> 'Run process reset

Bit start <p2> 'start conveyor running
Read Root Rung 35 [P ON] <p5>,

Rung 37 [CON-ON] <p6>
Write Root Rung 34 <p5>

Bit enable1 <p2> 'time1 enable *
Read/write Root Rung 39 [P-UP] <p7>

Bit enable2 <p2> Itime2 enable '
Read/write Root Rung 42 <p8>

Bit enable3 <p2> 'time3 enable '
Read/write Root Rung 43 <p9>

Bit enable4 <p2> 'time4 enable
Read/write Root Rung 45 <p10>

Bit enable5 <p2> 'time5 enable
Read/write Root Rung 47 <pll>

Bit enable6 <p3> 'time6 enable
Read/write Root Rung 48 <pll>

Bit enable7 <p3> 'time7 enable
Read Root Rung 39 [P UP] <p7>
Read/write Root Rung 51 cp13>

TATION\\C:\OC\test6.oc
'riday, May 12, 1995 6:06 pm
'se OMEGA Controlware to control the CIM cell

lata 21 Root

)ata 22 Root

lata 27

lata 28

lata 29

Rung 32

Rung 33

Rung 34

Rung 35

Rung 36

Rung 37

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Root

Bit t3 - out <p3> 'time3 output '
Read Root Rung 44 <p9>
Read/write Root Rung 43 <p9>

Bit t6-out <p3> 'time6 output
Read Root Rung 49 <p12>
Read/write Root Rung 48 <pll>

Page 17
Item Directory

Bit t7-out <p3> 'time7 output, shut down machine '
Read Root Rung 36 [P OFF] <p6>,

Rung 38 [CON OFF] <p6>,
Rung 52 <p13<

Read/write Root Rung 51 <p13>

New <p3>

Signed word time1 <p3>
'Delay 1000 miliseconds then lift Pallet up '
Read/write Root Rung 39 [P - UP] <p7>

Signed word time2 <p3>
'delay 1000 miliseconds then get chuck close '
Read/write Root Rung 42 <p8>

Signed word time3 <p3> 'delay 2000 miliseconds '
Read/write Root Rung 43 <p9>

Signed word time4 <p3>
'delay 2000 miliseconds then start lathe
Read/write Root Rung 45 <p10>

Signed word time5 <p3>
'delay 2000 miliseconds then open chuck
Read/write Root Rung 47 <pll>

Signed word time6 <p3> 'delay 2000 miliseconds '
Read/write Root Rung 48 <pll>

Signed word time7 <p3> 'delay 500 miliseconds
Read/write Root Rung 51 <p13>

Queue rung <p4>

Queue rung <p4>

Queue rung <p5>

Matrix rung P - ON <p5>

Matrix rung P - OFF <p6>

Matrix rung CON - ON <p6>

CATION\\C:\OC\test6.oc
ciday, May 1 2 , 1995 6:06 pm
;e OMEGA Controlware t o c o n t r o l t h e CIM cell

Ing 38 Root Matrix rung CON-OFF <p6>

Ing 39 Root T i m e r rung P - U P <p7>

Jng 40 Root Matrix rung <p7>

ung 4 1 Root Queue rung <p8>

ung 4 2 Root Timer rung <p8>

ung 43 Root Timer rung <p9>

ung 4 4 Root Queue rung <p9>

ung 45 Root T i m e r rung <p10>

ung 46 Root Queue rung <p10>

ung 47 Root T i m e r rung < p l l >

.ung 48 Root T i m e r rung < p l l >

.ung 49 Root Queue rung <p12>

Lung 50 Root Matrix rung <p12>

tung 51 Root Timer rung <p13>

Lung 52 Root Queue rung <p13>

: t e m Type
*--------

Good Bad To ta l ---- --- -----
Iata 30 0 30
tung 2 1 0 2 1
;raph 0 0 0
lemo/t i t le 1 0 1
'onf i g u r a t i o n 0 0 0

Page 18
I t e m Directory

TATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

h - close Alias for port - c.3; defined in Data 4 <pl>
port - c Unsigned byte 'CIM Cell Control Output Module

(cim3)
. 3 (ch-close) 'Chuck Close

Read Root Rung 43 <p9>
Read/write Root Rung 42 <p8>

b - open
port - c

:iml
port-a

Alias for port - c.1; defined in Data 4 <pl>
Unsigned byte 'CIM Cell Control Output Module
(cim3)

.1 (ch-open) 'Chuck Open
Read Root Rung 48 <pll>
Read/write Root Rung 47 <pll>
Write Root Rung 40 <p7>

Page 19
Name Directory

Alias for port-a; defined in Data 2 <pl>
Unsigned byte 'CIM Cell Control Input Module
(ciml)

.4 (la-stop) 'lathe Stop
Read Root Rung 46 <p10>

.5 (p-lifted) 'Pallet Lifted '
Read Root Rung 39 [P-UP]

Rung 40 <p7>, Rung 41 <p8>
06 (p-arr) 'Pallet Arrived '

Read Root Rung 35 [P ON] <p5>,
Rung 38 [CZN OFF] <p6>,
Rung 39 [PUP] <p7>

.7 (pho - cell) 'Photo Cell
Read Root Rung 36 [P - OFF] <p6>

2 im2 Alias for port-b; defined in Data 3 <pl>
port - b Unsigned byte 'CIM Cell Control Output Module

(cim2)
.O (la hand) 'Lathe Handshank '
.1 (laIg66) 'Lathe G66inp
.2 (la - run) 'lathe Running

~ATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
;e OMEGA Controlware to control the CIM cell

im3
port-c

Alias for port - c; defined in Data 4 <pl>
Unsigned byte 'CIM Cell Control Output Module
(cim3)
(~-stoPs) 'Pallet Stops '

Read Root
Write Root

(ch-o~en) 'Chuck Open
Read Root
Read/write Root
Write Root

(la-start) 'Lathe Start
Read/write Root

(ch-close) 'Chuck Close
Read Root
Read/write Root

(p-liftup) 'Pallet Lift Up
Read/write Root

(conveyor) 'Conveyor
Write Root

(p-liftdw) 'Pallet Lift Down
Read Root

Write Root

Page 20
Name Directory

Rung 38 [CON-OFF] <p6>
Rung 35 [P ON] <p5>,
Rung 36 [P-OFF] - <p6>

Rung 48 <pll>
Rung 47 <pll>
Rung 40 <p7>

Rung 45 <p10>

Rung 43 <p9>
Rung 42 <p8>

Rung 39 [P - UP] <p7>

Rung 37 [CON ON] <p6>,
Rung 38 [CON~OFF] <p6>

Rung 35 [P ON] <p5>,
Rung 37 [CON ON] <p6>,
Rung 51 <p137
Rung 50 <p12>

:ON OFF - Defined in Rung 38 <p6>
Matrix rung

:ON - ON Defined in Rung 37 <p6>
Matrix rung

:onveyor Alias for port - c.5; defined in Data 4 <pl>
port - c Unsigned byte 'CIM Cell Control Output Module

(cim3)
.5 (conveyor) 'Conveyor

Write Root Rung 37 [CON ON] <p6>,
Rung 38 [CON-OFF] - <p6>

Defined in Data 14 <p2>
Bit 'time1 enable

Read/write Root Rung 39 [P-UP] <p7>

Defined in Data 15 <p2>
Bit 'time2 enable

Read/write Root Rung 42 <p8>

Defined in Data 16 <p2>
Bit 'time3 enable

Read/write Root Rung 43 <p9>

TATION\\C:\OC\test6,oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

Page 21
Name Directory

nable4 Defined in Data 17 <p2>
Bit 'time4 enable

Read/write Root Rung 45 <p10>

nable5 Defined in Data 18 <p2>
Bit 'time5 enable

Read/write Root Rung 47 <pll>

1nable6 Defined in Data 19 <p3>
Bit 'time6 enable

Read/write Root Rung 48 <pll>

!nable7 Defined in Data 20 <p3>
Bit 'time7 enable

Read Root Rung 39 [P UP] <p7>
Read/write Root Rung 51 <p13>

.a - g66 Alias for port - b.1; defined in Data 3 <pl>
port - b Unsigned byte 'CIM Cell Control Output Module

(cim2)
.1 (la-g66) 'Lathe G66inp

.a hand - Alias for port-b.0; defined in Data 3 <pl>
port-b Unsigned byte 'CIM Cell Control Output Module

(cim2)
.o (la-hand) 'Lathe Handshank

.a run - Alias for port - b.2; defined in Data 3 <pl>
port-b Unsigned byte 'CIM Cell Control Output Module

(cim2)
.2 (la-run) 'lathe Running

La - start
port - c

Alias for port - c.2; defined in Data 4 <pl>
Unsigned byte 'CIM Cell Control Output Module
(cim3)

.2 (la - start) 'Lathe Start '
Read/write Root Rung 45 <p10>

La stop Alias for port-a.4; defined in Data 2 <pl>
port - a Unsigned byte 'CIM Cell Control Input Module

(ciml)
.4 (la - stop) 'lathe Stop

Read Root Rung 46 <p10>

? arr - Alias for port-a.6; defined in Data 2 <pl>
port - a Unsigned byte 'CIM Cell Control Input Module

(ciml)
-6 {p-arr) 'Pallet Arrived

Read Root Rung 35 [P ON] <p5>,
Rung 38 [CON OFF] <p6>,
Rung 39 [PUP] <p7>

rATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

Page 22
Name Directory

- liftdw Alias for port - c.6; defined in Data 4 <pl>
port-c Unsigned byte 'CIM Cell Control Output Module I

(cim3)
.6 (p-liftdw) 'Pallet Lift Down

Read Root Rung 35 [P-ON] <p5>,
Rung 37 [CON ON] <p6>,
Rung 51 <p137

Write Root Rung 50 <p12>

- lifted Alias for port - a.5; defined in Data 2 <pl>
port - a Unsigned byte 'CIM Cell Control Input Module

(ciml)
.5 (p-lifted) 'Pallet Lifted

Read Root Rung 39 [P-UP] <p7>,
Rung 40 <p7>, Rung 41 <p8>

- liftup Alias for port - c.4; defined in Data 4 <pl>
port - c Unsigned byte 'CIM Cell Control Output Module

(cim3)
.4 (p-liftup) 'Pallet Lift Up

Read/write Root Rung 39 [P-UP] <p7>

OFF - Defined in Rung 36 <p6>
Matrix rung

Defined in Rung 35 <p5>
Matrix rung

) - stops Alias for port - c.0; defined in Data 4 <pl>
port - c Unsigned byte 'CIM Cell Control Output Module

(cim3)
.O (p-stops) 'Pallet Stops

Read Root Rung 38 [CON OFF] <p6>
Write Root Rung 35 [PONI <p5>,

Rung 36 [P - OFF] <p6>

' UP - Defined in Rung 39 <p7>
Timer rung

)ho cell Alias for port - a.7; defined in Data 2 <pl>
port - a Unsigned byte 'CIM Cell Control Input Module

(ciml)
.7 (pho-cell) 'Photo Cell

Read Root Rung 36 [P OFF] <p6> -

TATION\\C:\OC\test6.oc
'riday, May 12, 1995 6:06 pm
'se OMEGA Controlware to control the CIM cell

tort-a Defined in Data 2 <pl>
Unsigned byte 'CIM Cell Control
(ciml)

.4 (la - stop) 'lathe Stop
Read Root

.5 (p-lifted) 'Pallet Lifted
Read Root

-6 (p-arr) 'Pallet Arrived '
Read Root

.7 (pho-cell) 'Photo Cell
Read Root

Input Module

Rung 46 <p10>

Rung 39 [P-UP] <p7>,
Rung 40 <p7>, Rung 41 <p8>

Rung 35 [P ON] <p5>,
Rung 38 [CON OFF] <p6>,
Rung 39 [PUP] <p7>

Rung 36 [P - OFF] <p6>

)ort - b Defined in Data 3 <pl>
Unsigned byte 'CIM Cell Control Output Module '
(cim2)

-0 (la-hand) 'Lathe Handshank
.1 (la-g66) 'Lathe G66inp
.2 (la-run) 'lathe Running

Defined in Data 4 <pl>
Unsigned byte 'CIM Cell Control
(cim3)
(p-stops 'Pallet Stops

Read Root
Write Root

(ch-o~en) 'Chuck Open
Read Root
Read/write Root
Write Root

(la - start) 'Lathe Start
Read/write Root

(ch-close) 'Chuck Close
Read Root
Read/write Root

(p-liftup) 'Pallet Lift Up '
Read/write Root

(conveyor) 'Conveyor '
Write Root

Page 23
Name Directory

Output Module

Rung 38 [CON OFF] <p6>
Rung 35 [P ON] <p5>,
Rung 36 [PIOFF] <p6>

Rung 48 <pll>
Rung 47 <pll>
Rung 40 <p7>

Rung 45 <p10>

Rung 43 <p9>
Rung 42 <p8>

Rung 39 [P-UP] <p7>

Rung 37 [CON-ON] <p6>,
Rung 38 [CON-OFF] <p6>

(p-liftdw) 'Pallet Lift Down
Read Root Rung 35 [P - ON] <p5>,

Rung 37 [CON ON] <p6>,
Rung 51 <p137

Write Root Rung 50 <p12>

process2 Defined in Data 5 <pl>
Bit 'Run process robot (nest.cmd)

Read/write Root Rung 32 <p4>

TATION\\C:\OC\test6.oc
riday, May 12, 1995 6:06 pm
se OMEGA Controlware to control the CIM cell

Page 24
Name Directory

rocess3 Defined in Data 6 <p2>
Bit 'Run process lathe1 '

Read Root Rung 33 <p4>, Rung 34 <p5>
Write Root Rung 32 <p4>

Defined in Data 7 <p2>
Bit 'Run process poll

Defined in Data 8 <p2>
Bit 'Run process robot (loadpart. cmd)

Read Root Rung 42 <p8>
Write Root Rung 41 <p8>

Defined in Data 9 <p2>
Bit 'Run process robot (moveaway.cmd)

Read Root Rung 45 <p10>
Write Root Rung 44 <p9>

Defined in Data 10 <p2>
Bit 'Run process robot (moveback.cmd)

Read Root Rung 47 <pll>
Write Root Rung 46 <p10>

)rocess8 Defined in Data 11 <p2>
Bit 'Run process robot (getpart.cmd)

Read Root Rung 50 <p12>
Write Root Rung 49 <p12>

>rocess9 Defined in Data 12 <p2>
Bit 'Run process reset

c3 out -

t6 - out

t7 - out

Defined in Data 13 <p2>
Bit 'start conveyor running

Read Root Rung 35 [P ON] <p5>,
Rung 37 [CON ON] <p6>

Write Root Rung 34 <p5>-

Defined in Data 21 <p3>
Bit 'time3 output

Read Root Rung 44 <p9>
Read/write Root Rung 43 <p9>

Defined in Data 22 <p3>
Bit 'time6 output

Read Root Rung 49 <p12>
Read/write Root Rung 48 <pll>

Defined in Data 23 <p3>
Bit 'time7 output, shut down machine

Read Root Rung 36 [P OFF] <p6>,
Rung 38 [CON OFF] <p6>,
Rung 52 <p137

Read/write Root Rung 51 <p13>

1ATION\\C:\OC\test6.0c
.iday, May 12, 1995 6:06 pm
,e OMEGA Controlware to control the CIM cell

Page 25
Name Directory

.me 1 Defined in Data 25 <p3>
Signed word 'Delay 1000 miliseconds then lift Pallet up '

Read/write Root Rung 39 [P-UP] <p7>

Defined in Data 26 <p3>
Signed word 'delay 1000 miliseconds then get chuck close

Read/write Root Rung 42 <p8>

Defined in Data 27 cp3>
Signed word 'delay 2000 miliseconds

Read/write Root Rung 43 <p9>

Defined in Data 28 <p3>
Signed word 'delay 2000 miliseconds then start lathe

Read/write Root Rung 45 <p10>

Defined in Data 29 <p3>
Signed word 'delay 2000 miliseconds then open chuck

Read/write Root Rung 47 <pll>

ime6 Defined in Data 30 <p3>
Signed word 'delay 2000 miliseconds

Read/write Root Rung 48 <pll>

ime7 Defined in Data 31 <p3>
Signed word 'delay 500 miliseconds

Read/write Root Rung 51 <p13>

1 names in report.

