
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Designing a Publish-Substrate for

Privacy/Security in Pervasive

Environments

Lukasz Oprychal∗ Atul Prakash†

Amit Agrawal‡

∗Miami University, commons-admin@lib.muohio.edu
†Miami University, commons-admin@lib.muohio.edu
‡Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/6

Designing a Publish-Subscribe Substrate for Privacy/Security in Pervasive
Environments∗

Lukasz Opyrchal
Miami University

Oxford, OH
opyrchal@muohio.edu

Atul Prakash
University of Michigan

Ann Arbor, MI
aprakash@umich.edu

Amit Agrawal
Indian Institute of Technology

New Delhi, India
csu02103@cse.iitd.ernet.in

Abstract

The emergence of a multitude of technologies for tracking locations is leading to the design of perva-
sive location-tracking environments. In order to explore issues in the design of such environments, the
University of Michigan is deploying a network of location sensors in a number of buildings. Managing
privacy is expected to be a significant concern for acceptance of such pervasive environments. This paper
outlines an initial design of a publish-subscribe communication substrate for controlled distribution of
sensor data. We describe our prototype as well as aprivacy-awarelocation-tracking application built on
top of the system. The focus of this paper is on policy management so as to provide means for allowing
users to control distribution of data tagged with their ID toother users and services. The paper shows
how a wide variety of policies can be specified in the system and points out directions for future work.

1 Introduction

Computational environments are becoming increasingly pervasive due to increased interest in the use
of technologies such as RFID tags for tracking objects, people, and for use of data mining methods for
determining users’ behavior to help deliver more targeted products and information, etc. Applications are
also emerging where cell phone companies track users’ location to help provide location-based services
such as notifying a user when their friends are nearby, or of restaurants and gas stations in the vicinity.

However, such environments also raise significant privacy concerns in the minds of people, whether
the concerns are grounded in reality or not. For example, findings from the Active Badge systems [17]
suggest that individuals do not wish to have their movementsavailable to everyone. Finding a solution
to those concerns is of considerable importance if pervasive environments are to be widely used.

With the help of a National Science Foundation infrastructure grant, a location sensor network is being
deployed in several parts of Department of EECS building, consisting initially of RFID and 802.11g
location tracking sensors. In addition, a location sensor network is also being deployed in one of the
medical clinics at the University of Michigan to help track locations and activities of patients who suffer
from memory problems and are recovering in the clinic so thatthey can be gently reminded if they miss
a recommended appointment or activity. Culnan defines privacy as simply the ability of an individual
to control the terms for acquisition and usage of their personal information [13]. The question that we
consider in this paper is how can one build applications and services around the data that will be collected,

∗This work is supported in part by grants from the National Science Foundation (grants 0082851 and 0325332), Intel, IBM,
and Microsoft.

1

Content-based
Messaging
Middleware

User:Loc_sensor
Action:Publish

Attributes: Owner=aprakash
Building=EECS,
time: 0900

User: Lukasz
Action:Subscribe

Room == *,
Attributes: Owner == *,

Building == *

Authorizer: aprakash
Evt Type: Location_Info Privacy

Filter

Specific Location Privacy policy Data

Location
Sensors

Data
being published

Anonymized
Location data

Subscribe request

Condition: Workday()
Action: Receive

Figure 1: Incorporating policies in a content-based messaging system

while providing means to the users to have significant control over the conditions of distribution of their
data?

We note that the focus of this paper is limited to those distribution constraints that can be managed and
enforced by a computational infrastructure. At some level,legal mechanisms are likely to be required
to deter people from leaking information that they have access to. For this paper, the assumption is that
people are not generally looking to maliciously violate privacy rules. For localized environments such as
the medical clinic or the EECS department, we believe such anassumption to be reasonable. At the same
time, however, the goal of the computational infrastructure should be to prevent inadvertent violations
of users’ privacy policies to the extent possible, and thus finding formal ways of encoding policies is
desirable so that they can be computationally enforced.

To illustrate the issues in policy specifications, an example of a simple policy used by some mobile
phone services (e.g., i-mode services from DoCoMo and recently from AT&T) is one that allows users to
determine their friends’ nearest cell, provided their friends have given them permission to do so (similar
to permissions to view status in instant messaging systems). In general, however, the policies can be
much richer:

• Environment-dependent sharing. Users may want to share their location information only at certain
times of the day, or when they are in certain locations. Usersmay want to specify that their location
is available during specified events, so that they can be moreeasily tracked down, for example, if
they are late for the event.

• Privacy-protected access to location-based notification and autominder services. It should be pos-
sible for a user to receive location-based notifications, such as the nearest gas station, without
disclosing their location to the gas station. Anonymizing,trusted services will be needed as inter-
mediaries.

Figure 1 shows an example scenario in which our system is used. A useraprakashhas expressed a

2

privacy policy to allow receipt of his location informationonly during the Workday. Location sensors
publish data for different users, includingaprakash(which is time-stamped by either the sensors or the
middleware). A user has expressed an interest in receiving location information for all users, but will
only get location information foraprakashduring the Workday period. Of course, as pointed out above,
the policies can be richer. The user aprakash may wish to restrict availability of published data to only
certain users or services. Furthermore, the user may wish toallow or restrict the ability of those users or
services to delegate their right to other users. We considerthese issues later in the paper.

In our model, subscribers to data can be either users, end-user applications, or services. Services can
includeprivacy filtersthat anonymize sensor data or aggregate data from multiple sensors or over time.
Examples of data anonymizing include hiding the name of the user from location data, abstracting the
location data so that a recipient only knows that the user is in a building, but not the specific room, etc.

We note that for some users, relying on a common publish-subscribe infrastructure completely to do
the right thing with shared data may still be a significant trust issue. One idea we have considered is to
support the use of multiplepublish-subscribebrokers, in which a user has a designated trustedprivacy
broker, which could be running as a service on a machine that the userowns. The privacy broker could
use our policy infrastructure, just like a centralized service would, except that it would only be handling
events that pertain to the users that trust it.

The rest of the paper is organized as follows. Section 2 presents related work in publish subscribe
as well as privacy areas. Section 3 describes our security models for content-based publish subscribe
systems, security policy dimensions relevant to these systems and our security policy language. Section
4 describes the prototype of a secure content-based publishsubscribe system based on the security model
and policy language described here. Section 5 describes aprivacy-awarelocation tracking application
built on top of our secure pub-sub system. Section 6 describes our approach to evaluation of the system.
Finally, in Section 7, we present our conclusions and directions for future work.

2 Related Work

In recent years, publish subscribe (pub-sub) middleware has become an emerging paradigm for dis-
tribution of data among users and services. In publish-subscribe systems, there are two types of users:
publishers and subscribers. The infrastructure mediates delivery of events from publishers to subscribers.
Current commercial publish subscribe middleware implement thesubject-basedparadigm, where every
event is annotated with one of the pre-defined subjects (topics, channels, etc.) [6, 30, 22, 29]. Subscribers
are allowed to subscribe to one of the pre-defined topics.

An emerging alternative to subject-based systems arecontent-based messaging systems[28, 4, 12,
16, 21]. These systems support an event schema defining the type of information contained in each
event (message). For example, applications interested in location information of users may use the event
schema:

LOC_INFO: [user: String, building: String, room: String]

A content-based subscription is a predicate against the event schema, such as

(user = "aprakash" & building == “EECS Building”)

Only events that satisfy the subscription predicate are delivered to the subscriber. Examples of content-
based publish subscribe systems include PreCache [26, 14] and content-based prototypes from Microsoft
[10] and IBM [4].

3

To help provide an infrastructure for distribution of sensor data to applications that handle these types
of policies, we propose to use a content-based messaging substrate as the underlying mechanism. How-
ever, there is a significant difference from earlier work in content-based publish-subscribe systems. In
existing systems, the focus is on subscribers being able to control what information they receive by speci-
fying predicates, for example, to handle the information overload problem. In contrast, our primary focus
is on publishers being able to control who receives their data and under what terms. We thus need to aug-
ment the content-based publish-subscribe paradigm to allow publishers (users) to control dissemination
of information they own.

A general description of security requirements in content-based systems is given in Wanget al [31].
The authors provide a high level description of potential issues and point in the direction of possible
solutions. One of the first attempts at solving the access control problem in content-based systems
is presented in [5]. The authors combine role-based access control (RBAC) with a distributed event
notification service. Unfortunately, the authors do not describe the details of their policy language and
the type of access control rules that can be supported by their system.

A number of systems have emerged that that support privacy inpervasive environments. One such
system is the Confab system by Hong and Landay [20]. There areseveral differences in approach.
While our system is based in a content-based messaging middleware, their system is based on hybrid
blackboard and dataflow architecture, leading to potentially different programming models. In Confab,
each data item is tagged with privacy preferences and at present only relatively simple preferences are
supported. In contrast, our approach is to make a distinction between privacy policies and data. Privacy
policies generally come from users and can apply to multipledata items, as opposed to being explicitly
attached to each data. Both approaches have pros and cons, depending on the threat model and the
targeted applications.

Campbellet al describe many issues in designing location-based pervasive environments [11]. The
authors explore challenges in building security and privacy into pervasive environments and present a
solution based on the Gaia authentication service [27] and Mist Routers [3]. Their main concern is
not policy controlled dissemination of location information but rather anonymous collection of location
information from different sensors.

Project Aura [15] is a large system for pervasive computing environments. Hengartner and Steenkiste
provide protection of location information in Aura [18, 19]. Their work concentrates on policies for
environments where location information can come from multiple places (GPS phone, wireless networks,
or a person’s personal calendar). The authors deal with issues of trust (which services can be trusted) and
delegation. Their solution is based on SPKI/SDSI certificates. The policy language is similar to ours and
policy evaluation is similar KeyNote. The main difference is that their solution is designed for querying
location information (i.e., where is Alice? or who is in room302?) and not for dealing with distribution
of such information as in a publish subscribe system as described in this paper.

3 Policy Model

Both the privacy as well as the security research communities have examined issues in representing
policies, with P3P [1] being an example representation in the privacy community and techniques such as
role-based access control models (RBAC), trust managementsystems, Chinese wall models, and Clark-
Wilson models in the security community [7]. Our work largely builds on the work in the security
community because security policies have been a subject of investigation for a long time and the maturity
of the tools for enforcing those policies. Also, our long-term interest is in taking a unified approach to
security and privacy because ultimately, security underpinnings are required to enforce privacy when
unauthorized users attempt to tap available data.

For the purpose of this paper, we will assume that all clientsconnecting to a content-based publish

4

subscribe system are authenticated. The data security problem in content-based publish-subscribe sys-
tems is further discussed by Opyrchal and Prakash [23]. In this paper, we primarily focus on access
control and delegation aspects in publish-subscribe systems and their extensions to managing privacy in
pervasive environments.

3.1 Basic Definitions

Event Owner: Similarly to Belokosztolszkiet al [5], we introduce the notion of anevent owner in our
model. Event owner is an entity who has the right to authorizeother entities to perform certain actions.
An event owner can authorize other users to subscribe to its events, receive events, or even delegate
authority to modify the policy for the events it owns. In mostapplications, we will associate a different
owner for individual events within an event type. For example, events of type “LOC_INFO” can be
owned by different users - if an event is aboutjoe, then joe is the owner of that event. Each owner will
control access to the events it owns

Depending on the application, there may be one owner for an event schema, irrespective of event
contents, in which case the owner has complete control over access control rules for that event schema.
For example, if a service provides aggregated sensor data, it may claim to be the owner of all that
data, irrespective of the ownership of individual events from which the aggregate data was generated.
Users may only be able to choose whether to provide information owned by them to the service (under
appropriate terms), but not have rights to the aggregated data.
Application: The pub-sub system can support multipleapplications, where applications refer to broad
categories such as a user-tracking system. In turn, each application consists of a number of event types.
Each application must have at least oneadministrator. The administrator is a client of the pub-sub system
who has the right to delegate authority to perform differentactions within the application. For example,
the administrator can delegate theownershipof different event types, add new event types, etc. Figure
2 shows the administrator of a LOC_APP application (location-tracking application) delegating rights to
userjoe when attributeuseris equal to “joe”.

This paper does not present a new policy evaluation technique. Our original prototype implementation,
used the KeyNote Trust Management System [8] for evaluatingand checking our security policy. We are
currently modifying our prototype to use the CPOL policy evaluation engine developed by one of this
paper’s authors [9]. CPOL has a C++ interface for specifyingpolicies but its expressiveness is similar
enough to KeyNote’s that it is possible to show CPOL rules in aKeyNote-like syntax. Therefore, all of
our policy examples are based on the KeyNote language syntax. We briefly describe the different fields
that are found in KeyNote policy specifications:
Authorizer - this is the entity granting the right. The authorizer can beany entity in the system (provided
it is allowed to add policy rules). If an authorizer tries to grant rights which it doesn’t have itself, the
rule is rejected. The useradmin is implicitly granted all rights. This is achieved by writing a rule with
authorizer being set to “POLICY” (figure 2). Such rule is always trusted. The authorizer field must not
be empty.
Licensee - this is the recipient of the right. The licensee field can contain a single entity, a list of entities,
or a wildcard1. A wildcard indicates that any user who satisfies the condition specified in thecondition
field is given the right.
Condition - this is the condition that is checked when policy rules are evaluated. If the condition eval-
uates to “true” then the licensee is given the appropriate rights (in practice, conditions are evaluated
bottom-up until a rule with authorizer value “POLICY” evaluates to “true”).

1In the KeyNote language there are no wildcards. To delegate the right to any user who satisfies the condition, the licensees
field must be left out of the rule.

5

� � � � � � �� � � 	
 � �
� �� �� � � � � � 	 � � � ��� � � � �� �� � � 	 �� � �� � � � � �� � � � �� � � �

 � � �� �� �� � � �� � � � � � �� � � 	 � � � ��� �� � � � � � 	 � �� � � � �� �� � � 	 �� � �� � � � � �� � � ! ! � � � � �

 ""� # #�� $ �% & � � � � !! � � � �
' (� ""� # #�� � � � � � !! � � "" � # # ��) � � � � � ! ! � � ""� �� !!� �� � "" �
Figure 2: Entity admin receives all rights for the LOC_APP application and grants ownership rights to

user joe when theuserattribute is “joe”* + , - . / 01 2 / 3 4 5 6 078 09 2 7 : 2 2 3 ; . 2< . 7 5 0, 0. 7 : 3 =4 > >? 5 . 6 4 07 @ @ A 8 B < ? * C C D E F F =2 G ,H I > 2 @ @ A 8 B < ? JK L B D E F F= =4 9 , 0. 7 @ @ AM N O M < P JO Q D E R R =4 9 , 0. 7 @ @ A P Q < Q JS Q D E R R=4 9 , 0. 7 @ @ A < T * K U Q? C B 8 J< V D EE F F =.W 7 2 / @ @ A; . 2 D EX Y A, /+ 2 D Z
Figure 3: Assignment of ownership rights to the owner.

Signature - cryptographic signature verifying that it was the authorizer who wrote the rule (not shown in
most of our examples). The signature field is required in all rules except for the “POLICY” rules which
are read from file and implicitly trusted (unsigned rules arenot accepted over the network).

The condition rulesare simple logical expressions and may use theand operator “&&” and theor
operator “||”. Condition rules may use a combination of event attributes and external attributes. The
availability of external attributes depends on the implementation. They can include current time, number
of received events (by each subscriber), etc.

3.2 Access Control

We identify a number of actions that can be performed in our system. Each action has certain security
implications and should be controlled through an access control policy. The supported actions are:

• authenticate - authenticate to the system

• advertise - introduce a new event type into the system

• publish - publish an event of a particular type

• subscribe - subscribe to an event of a particular type

• receive - receive an event

• change policy - modify the security policy (add/remove/modify rules)

We consider authentication to be outside of our security model. It is used only to positively authen-
ticate users trying to perform one of the other actions. Authentication must be performed in order to
enforce the security policy.

Each owner usually receives the right to publish, subscribe, receive,and change policy for the
events/event types he owns. A KeyNote rule that would permitthis for userjoe is shown in Figure 3.
Using that rule, userjoe receives the right to subscribe and receive his own events aswell as to manage
policy for those events. The ownerjoe can in turn authorize other users to perform certain actions.

6

� � �� � � �� � � 	
 � �� �� �
��� 	 � ��� �� �
� �� ��
 � 	 �� ��� � �� � �
 � � � �� �� � � �� � � � �� � �� �� � � ��� �� !" #� � � � ���� � � ��
 � � �$ % &$ � ' !& (��)) �� � � ��
 � � �' (� (!* (� �� � ���+
� � � � �
 � � � � ,- �� ��� � .
Figure 4: Userjoe grants the right to subscribe and receive his events of type LOC_INFO to useralice.

3.3 Delegation

One of the problems with some trust management systems isdelegation of rights. The KeyNote
system, which we use in our prototype, allows an entity to delegate any rights that it possesses to other
entities. In figure 4, useralice is authorized to subscribe and receive all events with attributeuserequal
to “joe”.

From a privacy perspective, the ability of a user to grant allor a subset of rights to another user,
irrespective of the ownership of data, is not always desirable. In a location tracking application, for
example, Joe might give Alice the rights to subscribe and receive his location events. But Joe may not
want Alice to, in turn, pass these rights to another user.

Alice could simply send each event about Joe to another entity outside of the pub-sub system. It is
beyond the scope of our system (and perhaps any software system) to control Alice’s ability to leak the
data received outside the system, or even to republish Joe’sdata with a false claim of ownership within
the system. Alice would be a malicious user in that case and this is the classical problem of digital rights
management, which we know is hard to do if users are malicious. However, we do want to provide a
basic solution for Joe to make sure Alice cannot inadvertently allow others to receive his events within
the system by simply adding a rule that grants such rights to others, as allowed by KeyNote.

In order to restrict Alice’s ability to grant those rights, we provide thechange_policyaction. In order
to allow a user to receive some events, Alice would have to enter a new policy rule. To do this, she would
need the right to perform thechange policyaction for events owned by Joe. If Joe does not grant the right
to modify policy rules for his events to Alice, Alice will be unable to delegate the rights to receive Joe’s
events without Joe’s permission (figure 4 shows Joe delegating the rights to subscribe and receive events
but not to change policy). We note that the CPOL policy evaluation system adds support for delegation
which is not present in KeyNote. This feature of CPOL allows better and cleaner control of delegation
rights.

3.4 Data Security Policy and Advertisements

An advertisement is a way for an authorized entity to introduce a new event typeinto the system.
The access control policy is checked to make sure that the advertiser is authorized to perform the action.
An advertisement describes the new event type and indicatesthe type of access control and data security
required. An example of an advertisement is shown in figure 5.More information about issues presented
in this section can be found in [24].

Types of access control
The following are the possible types of access control:
No-control - no access control is performed for events of this type. All users of the system are allowed
to subscribe and to receive events of this type.
Subscribe-time - access control policy is checked whenever a new subscription for events of the par-
ticular type is entered. If allowed, the new subscription should be inserted into the subscription set,
otherwise it is rejected. Since subscription requests are controlled through the access control policy,

7

� � � � �� � � �� � 	
 � �
 � � �� � � � � � � � � 	
 � �
 �� � �� � � � �� � � � � 	 � � � � 	� � � �� �� � � �� �� � 	� � � �� �� � � � 	 �� � � � � �� � � � � � � � � � � � � 	 � � � � �� � � � � � � � � �� �� � � � � �� � 	 � � � � �� � � � �� � �� � �� � � � � �� �! � � � � �� � �� � 	 � � � � " �� �
 � � �
Figure 5: An advertisement for event type “LOC_INFO”

individual events are delivered to the interested (matching) subscribers without further access control
checks.
Receive-time - access control policy is checked before events are delivered to interested subscribers. All
users are allowed to enter subscription requests for eventsof this type. When an event is published and a
matching process determines a set of interested subscribers, the access control policy is checked whether
each subscriber in the matching set is allowed to receive theparticular event.

The receive-time policy is useful when access control rulesdepend on the environment or other dy-
namic values external to the event itself. For example, an application may allow users to enter any
subscription but may limit the number of events received by each subscriber to a particular number.
Subscribers may also be limited to receive events during a particular time during the day or only during
weekdays (and not on weekends). It is impossible to check these types of rules at subscribe time.
Receive-Subscribe-time - both subscription attempts and event receive attempts arecontrolled. This
policy combines the subscribe-time and receive-time policies.

Data security guarantees
The data security guarantees field specifies which guarantees are required for events of this type. The
choices areconfidentiality, integrity, andsender authenticity. When confidentiality is chosen, events are
encrypted while traveling through the pub-sub system. Events are also encrypted when they are delivered
from a broker to its interested subscribers. Similarly, when integrity is chosen, a message authentication
code (MAC) is added to each event.

Granularity of security guarantees
The granularity parameter applies only if confidentiality was chosen as one of the security guarantees.
There are a number of ways confidentiality of events can be provided. Events withno access controland
confidentiality, must only be protected from outsiders (entities not authorized to use the pub-sub system
at all). We call this type of granularitysystem granularity.

Other event types may require that only authorized subscribers can gain access to all events of the
particular type (authorized subscribers can receive all events of this type). This type of granularity
requires that all events are encrypted in such a way that subscribers which are not authorized to receive
any events of this type cannot gain access to those events. Anexample of this type of an application is a
stock quote service where users must pay in order to receive quotes. Once they pay, they can receive all
stock quotes. We call thisevent type granularity.

Finally, some applications require that only the set of authorized and interested subscribers can gain
access to events. This means that for each event, a set of interested and authorized subscribers is deter-
mined. Then, only subscribers from this set should be able togain access to that event. This is useful
for applications where subscribers may be authorized to subscribe to and receive any event but can only
receive a limited number of such events. Similarly, this is also useful when some users are allowed to

8

receive events only during certain times of the day. If eventtype granularity was used some subscribers,
who have already reached their event limit, could simply “sniff” network traffic to gain access to more
events of this type (since they have the appropriate security keys). We call thismatching set granularity.

4 Prototype

We have built a prototype content-based publish subscribe system to demonstrate the viability of
our model and policy language as described in section 3. The current version implements most of the
discussed features. This section describes the implementation of our pub-sub system and the next section
describes theprivacy-awarelocation tracking application built on top of the pub-sub system.

Our publish subscribe system is implemented in Java (with the exception of KeyNote which is writ-
ten in “C”). The current implementation only supports equality tests in the subscription language. It
is straightforward to add additional operators to the subscription language and we are currently imple-
menting inequality operators. The matching algorithm is based on tree matching algorithms presented
in [2, 4, 25]. We are currently integrating our system with the CPOL policy evaluation engine which
will replace KeyNote. CPOL [9] was designed to offer expressiveness of the policy language similar
to KeyNote. The main advantage of CPOL is its much better performance characteristics. Experiments
show that CPOL is several orders of magnitude faster than KeyNote when evaluating policy rules.

The subscription language supportswildcards. For example, the subscription

(user=="joe" && building=="EECS" && room=="*")

specifies interest in “LOC_INFO” events where theuserattribute is equal to “joe” andbuilding attribute
is equal to “EECS”. In other words, the subscriber is interested in tracking user joe anywhere in the
EECS building.

4.1 System Architecture

Our pub-sub system consists of clients (publishers, subscribers, owners, administrators) and the event
delivery system. The event delivery system is designed to consist of a network of event brokers. The
events will be routed between brokers using a combination ofalgorithms described in [4, 25]. The current
implementation, designed as a proof of concept for our security infrastructure, supports only one central
broker.

A broker accepts client connections and performs requestedactions. The event broker maintains a
database of users who have signed-up to use the system. We assume that users sign-up off-line and that
during that process they generate a public/private key pairand submit their public key to the pub-sub
system. When connecting to the broker, clients must authenticate first. The broker can be extended to
support any type of authentication protocol. A simple solution can be anssh-likeprotocol based on the
public/private key pairs generated when signing up for the service. Currently, we implemented a simple
password-based authentication protocol.

Once authenticated, clients can make requests to add subscriptions, publish events, or add new policy
rules (presumably to authorize other users to perform some actions). We assume that the communication
between a client and a broker is encrypted. This can be achieved by establishing asession keyduring
authentication and using that key to encrypt all messages. An alternative solution is to use one of the
caching algorithms described in [23] to improve performance.

The architecture of an event broker is shown in figure 6. Theclient handleris responsible for all
communication with pub-sub clients. The client handler parses the message, determines the protocol

9

� ��� � � �� �� �� 	
 ���� � � �
� � �� �� � �� �� 	
� �
 � 	 ��� � � �� �� 	� �� ���� � �� �� �� �
� �� �� �� � � �� !� � ��� � � "#� � ��� �
 � ��� $ �� ���

# 	� %� 	"�� "# 	� %� 	� � �� �� 	
&'() *+ ,+ -+ '(� �
 � 	���. � � �
 �$/ �� � �� � �� �� �� 	$/ �� � �� �� �� $/ �� � �� �� �� ...

Figure 6: Broker Architecture.

type (authenticate, publish, subscribe, change policy, etc.), and calls an appropriateprotocol handler
method (in case of an authentication message, the client handler usesauthenticatormethods instead).

Theprotocol handleris the main part of the broker. It validates the message passed to it from client
handler and decides what to do with it. In case of a valid message, the protocol handler checks with
thesecurity managerwhether the requested action is allowed. If the security manager allows the action,
protocol handler calls appropriate methods in thematching enginemodule. The security manager uses
theKeyNote System[8] to determine whether the given action is allowed under the current security policy
(the new prototype will use CPOL instead of KeyNote). This isdone by constructing anaction query
(based on the parameters passed in from the protocol handler) and calls the appropriate KeyNote method.
KeyNote, in turn, evaluates the action request in the context of current security policy and returnstrue if
action is allowed orfalseif it is rejected.

The matching engine handles subscription requests by simply adding new subscriptions to the match-
ing tree. In case of a publish request, the matching engine searches the matching tree to determine the
set of all subscriptions matching the given event. Since subscriptions are annotated with subscriber id’s,
the search algorithm returns a list ofmatching user id’sto the protocol handler. If the event requires
an access control check before sending it to the matched subscribers, the protocol handler must check,
for every matching user, whether she is authorized to receive the event. This is done by querying the
policy evaluation engine separately for each matching user. We are forced to use this, rather inefficient,
algorithm because of the KeyNote API which only allows the permissions for one user to be queried at a
time. The new version of the system, which uses the CPOL engine instead of KeyNote, supports groups
of users as well as roles which remove some of the inefficiencies. Section 6 describes the new version
of the policy evaluation engine in more detail.

Sometimes, an event owner may want to authorize other users to perform an action based on attributes
which are not part of the event schema. In the location tracking example above, assume that the user Joe
wants to grant access to all of his location events but only during regular work hours. Since the event
schema for LOC_INFO event type does not include time, it would be impossible to write such rule if we
were only allowed to use event attributes. Another such example is if Joe wanted to allow user Alice to
receive his events but only once an hour.

Our pub-sub system supportsexternal attributesto enable users to write rules such as the ones de-

10

scribed above. External attributes are attributes which are not part of the event schema but are added to
the event before security policy is evaluated. This allows us to write policy rules which depend on at-
tributes which are not included in the event at publish time.Theextension manageris the module which
determines whether external attributes should be added to aparticular event. By convention, external
attribute names haveextpre-pended to them.

For the extension manager to work, we must implement a special extension classfor each application
domain. This extension class adds appropriate attributes to events of different types within the application
domain. The extension manager has two important API calls:processEvent() which is called whenever
a new event is published. This method allows the extension manager to keep track of different pieces of
information, such as the number of events received by each user (as in the example above). This collected
information is then used to fill in external attributes by theaddAttribs() method. The addAttribs() API
call is used before evaluating whether the current action isallowed under current policy.

5 Location Tracking Application

The application is a secure, privacy-aware, location tracking system where location sensors (RFID
sensors) publish events whenever atag-wearingperson enters the sensor’s detection radius (the infras-
tructure for such system will be built into the new CSE building at the University of Michigan).

We have implemented a secure and privacy-aware location tracking application as presented in figure
1. The main goal of the application is to provide a flexible andsecure location service while protecting
privacy of its users. Our location tracking application uses the security infrastructure of our pub-sub
system to give users the power to choose with whom they are willing to share their location information
and under what conditions.

The application uses Radio Frequency Identification for Business (RFID) sensors deployed through-
out the location tracking area (building, campus, city, etc.). Users of the system carry small RFID badges
which are detected by the sensors. The sensors transmit their data tolocation publishers(one or more)
which are clients of the pub-sub system. The location publishers convert the sensor data into pub-sub
events of typeLOC_INFO. The event schema for this event type is defined as follows:

[LOC_INFO: (user: String, building: String, room: String)]

The location publishers publish the events to the publish subscribe system. Users of the system can
then subscribe to location information about other participants.

While potentially very useful, this type of an application introduces serious privacy concerns. Obvi-
ously, most of us do not want our location to be tracked by strangers or even by most people we know.
On the other hand, it may be beneficial for people working on the same project to know where their
collaborators are at certain times (for example). Locationinformation may also be necessary for certain
services that we may depend on.

It is important to understand that even if a person allows others to track her location, she may want
to restrict that access at times. A professor may allow others to track his location only during normal
working hours. Another possibility is to restrict locationinformation to two values - whether a person
is in her office or not. There are also people who do not want to share their location information with
anybody.

A privacy-aware location tracking application has to allowusers to control the flow of information
about them. It has to provide flexible policy language which allows users to express complex rules such
as the ones mentioned above. The location tracking application implemented on top of our pub-sub
system does just that.

11

Authorizer: POLICY

Licensee: location_admin

Conditions: (app_domain == “LOC_APP”) -> “true”;

Authorizer: location_admin

Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”)

(action == “SUBSCRIBE’) -> “true”;

Authorizer: location_admin

Licensee: location_publisher

Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”)

(action == “PUBLISH’) -> “true”;

Authorizer: location_admin

Licensee: owner

Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”) &&

((action == “RECEIVE”) || (action == “CHANGE_POLICY”))

-> “true”;

Authorizer: Bob

Licensee: Alice || Eve || Nick

Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”) &&

(owner == “Bob”) && (action == “RECEIVE”) &&

((extTime == “WORK_DAY”) || (extTime == “WORK_NIGHT”)) -> “true”;

Authorizer: Nick

Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”) &&

(owner == “Nick”) && (action == “RECEIVE”) && (extCollaborator == “true”)

-> “true”;

Authorizer: Eve

Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”) &&

(owner == “Eve”) && (action == “RECEIVE”) &&

(building == extBuilding) && (room == extRoom) -> “true”;

1

2

3

4

5

6

7

Figure 7: Sample policy for the location tracking application “LOC_APP”.

To allow users to control availability of the sensor data about them, every user is granted ownership
of events about them (Rule 4 in figure 7). To get around the problem of granting ownership individually
to each user (as in figure 2), the value ofownerin the Licensee field is derived from the event itself and
passed to the policy evaluation engine.

Users can then delegate a subset or all of their rights (for example rights to receive events) to other
users. By default, a user’s events are private and nobody butthe user can receive them.

The right tosubscribe to events is given universally to all users of the system. This is done to allow
subscriptions such as:

[LOC_INFO:(user=“*”,building=“EECS”, room=“2246”)]

where we want to know if anybody entered room 2246 in the EECS building. Since the event owner
is not known at subscribe time, it would be impossible to decide which “subscribe” policy rules apply
to this subscription request. Since everybody is allowed tosubscribe to all events, users can write rules
about who can actually receive the events. A small part of thepolicy is shown in figure 7 (note that we
are omitting parts of the KeyNote language syntax for clarity).

Rule 1 allowslocation_adminto administer the “LOC_APP” application. Rule 2 allows all users to
subscribe to events of type “LOC_INFO”. Rule 3 allows a special client, location_publisher, to publish
events of type “LOC_INFO”. Rule 4 gives all users the ownership rights to events about themselves.
Bob gives permission to Alice, Eve, and Nick to receive his events in rule 5. The receive right is only
valid duringwork daysandwork nights. Nick authorizes all users who are his collaborators to receive
his events in rule 6. The attributeextCollaboratoris evaluated externally. Finally, Eve allows all users to
receive her events but only if the subscriber and Eve are in the same room in the same building (rule 7).

12

� ��� � � �� �� 	
 ��
� � � � � � ��� ���
 �� �� � � � � 	���
 �� � ��� �� 	
 ��� � � � � � � ��� ���
 �� �� � � � � 	���
 ��� ��� �� 	
 ��� � � � � � � ��� ���
 �� � ��� � � 	���
 � �� ��� ��� �� 	
 �� � � � � �� ��� ���
 �� �� � � �� 	���
 �! ��� � ��� �� 	
 �" �� � � � �� ��� �� �
 �� � � � 	���
 �� � ��� �� 	
 �� � � � � � ��� ���
 �� �� � � � � 	���
 �##$ % ���
 � � �� �� 	
 �� � � � � � ��� ���
 ��� � � 	� ��
 ��� �� �� � �� �� 	
 �� ����� � � �� ��� �� �
 �� " &� � � 	� ��
 ��� �
Figure 8: Few example subscriptions from the location tracking application.' () * + ,-) . / ' 012 03 4 + , ,5 6 . *7 7 8 + 9: : ;' () * + ,-) . / ' 012 03 4 + , ,5 6 . *7 7 8 + 9: : <' () * + = 78 . / ' 012 03 4 + > > ?@ . *7 7 8 + 9:A :' () * + B 10C) . / ' 012 03 4 + B = D . *7 7 8 + 9< <' () * + 6 E8 . / ' 012 03 4 + , ,5 6 . *7 7 8 + <A A F

Figure 9: Few example events from the location tracking application.

We notice the use of external attributesextTime, extBuilding, extRoom, andextCollaborator in
rules 5 - 7. The extension classExternalLocationwas implemented to add the current time and the
location of the subscriber to the event attributes2.

Figures 8 and 9 show a number of sample subscriptions and events from our location tracking system.
KeyNote assertions can be rather confusing to users and while our pub-sub system allows submission

of policy rules using the full KeyNote syntax, we also offer asimplified syntax which is automatically
converted to the KeyNote language. The simplified language requires only the name of theLicenseeand
the conditions. This is then converted into a full KeyNote assertion, signed with the user’s private key
and transmitted to the broker.

6 Evaluation

We want to evaluate our publish subscribe system and the location tracking application in two ways.
One is to evaluate the performance characteristics of our pub-sub system and its security infrastructure.
This includes testing the behavior of the system with different sizes of subscription sets, event publish
rates, and most importantly, different sizes of security policies. In addition to testing the performance of
the system, we would like to evaluate the system’s usage by real users. Interesting questions involved in
such evaluation include the percentage of users willing to share their locations, their trust in the system,
the types of privacy rules, etc.

As of this time, the new CSE building at the University of Michigan (together with its network of
RFID sensors) is not completed yet and we are unable to perform user evaluation. While our system is
implemented as described above, we cannot test it with real users yet and we used a location generator
to test the application.

We were able to run performance tests but it became obvious that the KeyNote system is not well
suited for this type of application. Our initial experiments with about 100 security policy rules already
showed that it takes about 1 second to evaluate KeyNote queries on an average system (2.8 GHz Pentium
4 computer). The KeyNote system worked well in a small prototype system but it is not suited for a
larger implementation.

2Notice that the subscriber’s location is never revealed andonly used for policy evaluation.

13

It was obvious from the beginning that KeyNote was not designed for this type of an application.
Recently, Borders, Zhao, and Prakash developed a new, high-performance policy evaluation engine called
CPOL [9]. Using different evaluation algorithm and cachingtechniques, they were able to improve
evaluation performance by many orders of magnitude. The paper argues that CPOL’s performance is
more than adequate for high throughput applications such ascontent-based publish subscribe (or the
location-tracking system built on top). We are currently working on a new version of the system using
CPOL instead of KeyNote. Based on the evaluation results in the CPOL paper as well as the performance
characteristics of our content-based matching algorithm [2, 4], we expect that we will be able to support
a large location tracking system with our new prototype.

7 Conclusion and Future Challenges

We showed that the following types of access control and privacy policies can be formalized in our
system:

• Where users wish to make their data available to only selected users.

• Where users wish to place computable conditions before making data available. Those conditions
can be enforced at subscription time (to prevent users from even subscribing to data) or at receive
time (to allow users to subscribe to data but potentially notreceive it if it violates the predicate).

• Where users wish to control the ability of users to delegate the rights granted to other users.

Services such as privacy filters can be accommodated by treating them as both a publisher and a
subscriber. As a subscriber, they have to be authorized by users to receive their events. As a publisher,
however, the situation gets more complicated. We envisage two scenarios, one in which the service acts
as the owner of filtered data and thus controls further dissemination. This would typically be true of
services that aggregate data and can be dealt with in the framework to a degree by treating the service as
an original source of the data. The second scenario is that the service republishes the filtered event, but
continues to associate the user with the event as far as the policy enforcement is concerned.

We presented a solution to controlling delegation of rightsby placing restrictions on the ability of users
to change policies. However, that solution has its limitations. It handles the situation well when policies
are generally static. However, consider a scenario where a user Alice grants all rights to user Bob,
including the ability to delegate rights. Bob now subscribes to Alice’s events and also delegates those
rights to Charlie. Unfortunately, Alice cannot simply modify her rule to take awaychange_policy()right
of Bob to revoke Charlie’s rights; such a change will only affect future policy update operations of Bob,
not the past. From a privacy management perspective, a better solution would be to determine delegation
rights dynamically. Our new policy evaluation engine, CPOL, allows direct control over delegation of
rights. CPOL supports three levels ofdelegation rights: Normal, Admin, Delegate. Normal indicates
that the grantee cannot create new access rules. Admin and Delegate levels allow the grantees to add and
remove new rules on behalf of the event owner but with different restrictions on that delegate right.

In addition to the support for delegation, CPOL provides support for roles and groups. This feature
allows us to express rules that grant access to people based on their role (e.g., all nurses are granted the
right to monitor locations of all patients in a hospital). KeyNote, on the other hand, does not support
such rules directly

We would also like to provide support in our system to allow users to be prompted to “sign” a contract
if they wish to subscribe to a user’s data. Our plan is to make the contract be a part of theCondition in
the policy rule (e.g., as a functional predicate ContractSigned(contractDocumentURL)), and motivated
by the realization that not all aspects of privacy terms can be captured as a computable predicate and are

14

better expressed in a legal framework or as understandings between the publisher and subscriber. It is also
possible that a subscriber may wish a publisher to sign a contract before it will accept the publisher’s data
or provide a service to the publisher. Designing a solution for such scenarios in our framework requires
further investigation.

Finally, we would like to apply our policies to not only real-time events but also to events that may be
first archived in a database. A good and efficient solution forapplying the policies to queries on archived
events is not obvious. It is likely to require better integration of the policy framework with the query
system on the database.

References

[1] Mark S. Ackerman. General Overview of the P3P Architecture. MIT World Wide Web Consortium,
1997. http://www.w3.org/TR/WD-P3P-arch.

[2] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar D. Chandra.
Matching Events in a Content-Based Subscription System. InProceedings of Principles of Dis-
tributed Computing (PODC ’99), Atlanta, GA, May 1999.

[3] J. Al-Muhtadi, R. Campbell, A. Kapadia, D. Mickunas, andS. Yi. Routing Through the Mist:
Privacy Preserving Communication in Ubiquitous ComputingEnvironments. InProceedings of
nternational Conference of Distributed Computing Systems(ICDCS 2002), Vienna, Austria, 2002.

[4] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, JayNagarajarao, Robert E. Strom, and
Daniel C. Sturman. An Efficient Multicast Protocol for Content-Based Publish-Subscribe Systems.
In International Conference on Distributed Computing Systems, June 1999.

[5] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacon, and K. Moody. Role-based access control
for publish/subscribe middleware architectures. InProcessdings of the 2nd International Workshop
on Distributed Event-Based Systems (DEBS’03). ACM Press, June 2003.

[6] Ken P. Birman. The process group approach to reliable distributed computing.Communications of
the ACM, 36(12):36–53, December 1993.

[7] Matt Bishop.Computer Security: Art and Science. Addison-Wesley, 2003.

[8] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The KeyNote Trust-
Management System, Version 2, September 1999. Request For Comments (RFC) 2704.

[9] Kevin Borders, Xin Zhao, and Atul Prakash. CPOL: High-Performance Policy Evaluation. In
Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS), pages
147–157, Alexandria, VA, November 2005.

[10] Luis F. Cabrera, Michael B. Jones, and Marvin Theimer. Herald: Achieving a Global Event No-
tification Service. InProceedings of the Eighth Workshop on Hot Topics in Operating Systems
(HotOS-VIII), Elmau, Germany, May 2001. IEEE Computer Society.

[11] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Geetanjali Sampemane, and M. Dennis Mick-
unas. Towards Security and Privacy for Pervasive Computing. In Proceedings of nternational
Symposium on Software Security (ISSS 2002), Tokyo, Japan, 2002.

15

[12] Antonio Carzaniga. Architectures for an Event Notification Service Scalable toWide-
area Networks. PhD thesis, Politecnico di Milano, December 1998. Available from
http://www.cs.colorado.edu/~carzanig/papers/.

[13] Mary J. Culnan. Protecting Privacy Online: Is Self-Regulation Working.Journal of Public Policy
and Marketing, 19(1):20 – 26, 2000.

[14] Renee B. Ferguson. PreCache Unveils NetInjector Platform. eWeek, January 2003.
http://www.eweek.com/article2/0,3959,808317,00.asp.

[15] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: Towards Distraction-Free
Pervasive Computing.IEEE Pervasive Computing, 1:22–31, 2002.

[16] R. Gruber, B.Krishnamurthy, and E. Panagos. An Architecture of the READY Event Notification
System. InProceedings of the Middleware Workshop at the International Conference on Dis-
tributed Computing Systems, Austin, TX, June 1999.

[17] R. J. Harper. Why do and don’t People wear Active Badges:A Case Study.Computer-Supported
Cooperative Work, 4(4):297 – 318, 1995.

[18] Urs Hengartner and Peter Steenkiste. Protecting Access to People Location Information. InPro-
ceedings of First International Conference on Security in Pervasive Computing (SPC 2003), Bop-
pard, Germany, March 2003.

[19] Urs Hengartner and Peter Steenkiste. Implementing Access Control to People Location Informa-
tion. In Proceedings of 9th Symposium on Access Control Models and Technologies (SACMAT
2004), Yorktown Heights, NY, June 2004.

[20] Jason I. Hong and James A. Landay. An architecture for privacy-sensitive ubiquitous computing.
In Proceedings of MobiSys 2004, June 2004.

[21] B. Krishnamurthy and D. Rosenblum. Yeast: A general purpose event-action system.IEEE Trans-
actions on Software Engineering, 21(10), October 1995.

[22] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen.The Information Bus - An Architecture
for Extensible Distributed Systems.Operating Systems Review, 27(5):58 – 68, December 1993.

[23] L. Opyrchal and A. Prakash. Secure distribution of events in content-based publish subscribe sys-
tems. InProceedings of the 10th USENIX Security Symposium, pages 281–295, August 2001.

[24] Lukasz Opyrchal.Content-Based Publish Subscribe Systems: Scalability andSecurity. PhD thesis,
University of Michigan, Ann Arbor, 2004.

[25] Lukasz Opyrchal, Mark Astley, Joshua Auerbach, Guruduth Banavar, Robert Strom, and Daniel
Sturman. Exploiting ip multicast in content-based publish-subscribe systems. InProc. of Middle-
ware 2000, April 2000.

[26] PreCache. http://www.precache.com.

[27] Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Campbell,
and Klara Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active Spaces.IEEE Pervasive
Computing, 1(4):74–83, October-December 2002.

16

[28] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. InProceedings of AUUG97, Brisbane, Australia, September 1997.

[29] Dale Skeen. Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview. Technical re-
port, Vitria Technology Inc., 1996. http://www.vitria.com.

[30] TIBCO Messaging Solutions. http://www.tibco.com/ software/enterprise_backbone/messaging.jsp.

[31] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. SecurityIssues and Requirements for Internet-
Scale Publish Subscribe Systems. InProceedings of the HICSS-35, Big Island, Hawaii, January
2002.

17

