Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 2006

Designing a Publish-Substrate for
Privacy/Security in Pervasive
Environments

Lukasz Oprychal* Atul Prakash'
Amit Agrawalt

*Miami University, commons-admin@lib.muohio.edu
TMiami University, commons-admin@lib.muohio.edu
fMiami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/6

Designing a Publish-Subscribe Substrate for Privacy/Security in Pervasive
Environments*

Lukasz Opyrchal Atul Prakash Amit Agrawal
Miami University University of Michigan Indian Institute of Technology
Oxford, OH Ann Arbor, Ml New Delhi, India

opyrchal@muohio.edu aprakash@umich.edu csu02103@cse.iitd.ernet.in

Abstract

The emergence of a multitude of technologies for trackiogtions is leading to the design of perva-
sive location-tracking environments. In order to explasues in the design of such environments, the
University of Michigan is deploying a network of locatiomsers in a number of buildings. Managing
privacy is expected to be a significant concern for accemarficuch pervasive environments. This paper
outlines an initial design of a publish-subscribe commatian substrate for controlled distribution of
sensor data. We describe our prototype as well psacy-awardocation-tracking application built on
top of the system. The focus of this paper is on policy manageso as to provide means for allowing
users to control distribution of data tagged with their IDdther users and services. The paper shows
how a wide variety of policies can be specified in the systeshpaimts out directions for future work.

1 Introduction

Computational environments are becoming increasinglygsére due to increased interest in the use
of technologies such as RFID tags for tracking objects, lee@md for use of data mining methods for
determining users’ behavior to help deliver more targetedgpcts and information, etc. Applications are
also emerging where cell phone companies track users’idoctd help provide location-based services
such as notifying a user when their friends are nearby, cesithurants and gas stations in the vicinity.

However, such environments also raise significant privarcerns in the minds of people, whether
the concerns are grounded in reality or not. For exampleinigsdfrom the Active Badge systems [17]
suggest that individuals do not wish to have their movemawaslable to everyone. Finding a solution
to those concerns is of considerable importance if pergamivironments are to be widely used.

With the help of a National Science Foundation infrastreegrant, a location sensor network is being
deployed in several parts of Department of EECS buildingysisting initially of RFID and 802.11g
location tracking sensors. In addition, a location senswark is also being deployed in one of the
medical clinics at the University of Michigan to help traccéations and activities of patients who suffer
from memory problems and are recovering in the clinic sottmay can be gently reminded if they miss
a recommended appointment or activity. Culnan defines gyies simply the ability of an individual
to control the terms for acquisition and usage of their peaisanformation [13]. The question that we
consider in this paper is how can one build applications andaes around the data that will be collected,

*This work is supported in part by grants from the Nationak8ce Foundation (grants 0082851 and 0325332), Intel, IBM,
and Microsoft.

Authorizer: aprakash

Evt Type: Location_Info
Action: Receive
Condition: Workday/()

Privacy poIicy&l Specific Locatio

Privacy
Filter

Anonymized
Location data

Data

Content-based
Messaging
Middleware

/ Data .
Ang published

Location
Sensors User:Loc_sensor
Action:Publish
Attributes: Owner=aprakash
Building=EECS,
time: 0900

Subscribe request
N

User: Lukasz
Action:Subscribe
Attributes: Owner == *,
Room == *,
Building == *

Figure 1: Incorporating policies in a content-based meaagagystem

while providing means to the users to have significant cbotrer the conditions of distribution of their
data?

We note that the focus of this paper is limited to those distidbn constraints that can be managed and
enforced by a computational infrastructure. At some lelegjal mechanisms are likely to be required
to deter people from leaking information that they have asde. For this paper, the assumption is that
people are not generally looking to maliciously violatevpdy rules. For localized environments such as
the medical clinic or the EECS department, we believe sua@sanmption to be reasonable. At the same
time, however, the goal of the computational infrastruetsinould be to prevent inadvertent violations
of users’ privacy policies to the extent possible, and thndifig formal ways of encoding policies is
desirable so that they can be computationally enforced.

To illustrate the issues in policy specifications, an exagsla simple policy used by some mobile
phone services (e.g., i-mode services from DoCoMo and tlydeom AT&T) is one that allows users to
determine their friends’ nearest cell, provided theirrfde have given them permission to do so (similar
to permissions to view status in instant messaging systemsyeneral, however, the policies can be
much richer:

e Environment-dependent sharing. Users may want to sharddbation information only at certain
times of the day, or when they are in certain locations. Usergwant to specify that their location
is available during specified events, so that they can be easity tracked down, for example, if
they are late for the event.

e Privacy-protected access to location-based notificatimhaautominder services. It should be pos-
sible for a user to receive location-based notificationghsas the nearest gas station, without
disclosing their location to the gas station. Anonymizitmgsted services will be needed as inter-
mediaries.

Figure 1 shows an example scenario in which our system is Usetberaprakashhas expressed a

2

privacy policy to allow receipt of his location informati@nly during the Workday. Location sensors
publish data for different users, includigrakash(which is time-stamped by either the sensors or the
middleware). A user has expressed an interest in receiaicgtibn information for all users, but will
only get location information foaprakashduring the Workday period. Of course, as pointed out above,
the policies can be richer. The user aprakash may wish toatestailability of published data to only
certain users or services. Furthermore, the user may wialhoiw or restrict the ability of those users or
services to delegate their right to other users. We conisie issues later in the paper.

In our model, subscribers to data can be either users, erdapglications, or services. Services can
includeprivacy filtersthat anonymize sensor data or aggregate data from mulgpksoss or over time.
Examples of data anonymizing include hiding the name of ger rom location data, abstracting the
location data so that a recipient only knows that the user &shuilding, but not the specific room, etc.

We note that for some users, relying on a common publishesillesinfrastructure completely to do
the right thing with shared data may still be a significanstigsue. One idea we have considered is to
support the use of multiplpublish-subscribdrokers, in which a user has a designated truptegcy
broker, which could be running as a service on a machine that theouses. The privacy broker could
use our policy infrastructure, just like a centralized ssrwvould, except that it would only be handling
events that pertain to the users that trust it.

The rest of the paper is organized as follows. Section 2 pteselated work in publish subscribe
as well as privacy areas. Section 3 describes our securitdelmdor content-based publish subscribe
systems, security policy dimensions relevant to thesesystnd our security policy language. Section
4 describes the prototype of a secure content-based pshlisttribe system based on the security model
and policy language described here. Section 5 descrilpeivacy-awarelocation tracking application
built on top of our secure pub-sub system. Section 6 descabeapproach to evaluation of the system.
Finally, in Section 7, we present our conclusions and divastfor future work.

2 Reated Work

In recent years, publish subscribe (pub-sub) middlewasebeaome an emerging paradigm for dis-
tribution of data among users and services. In publishesill®s systems, there are two types of users:
publishers and subscribers. The infrastructure mediatidgedy of events from publishers to subscribers.
Current commercial publish subscribe middleware impleniemsubject-basegharadigm, where every
event is annotated with one of the pre-defined subjectsc@pphannels, etc.) [6, 30, 22, 29]. Subscribers
are allowed to subscribe to one of the pre-defined topics.

An emerging alternative to subject-based systemscandent-based messaging systd@® 4, 12,
16, 21]. These systems support an event schema defining gheofyinformation contained in each
event (message). For example, applications interestextatibn information of users may use the event
schema:

LOC_INFO: [user: String, building: String, room: String]
A content-based subscription is a predicate against th& eebema, such as
(user = "aprakash" & building == “EECS Building”)

Only events that satisfy the subscription predicate aligateld to the subscriber. Examples of content-
based publish subscribe systems include PreCache [26nd4jomtent-based prototypes from Microsoft
[10] and IBM [4].

To help provide an infrastructure for distribution of sendata to applications that handle these types
of policies, we propose to use a content-based messagisgatebas the underlying mechanism. How-
ever, there is a significant difference from earlier work amtent-based publish-subscribe systems. In
existing systems, the focus is on subscribers being ablenivat what information they receive by speci-
fying predicates, for example, to handle the informatioartbad problem. In contrast, our primary focus
is on publishers being able to control who receives thei dad under what terms. We thus need to aug-
ment the content-based publish-subscribe paradigm te glidblishers (users) to control dissemination
of information they own.

A general description of security requirements in conteaged systems is given in Waagal [31].
The authors provide a high level description of potentialés and point in the direction of possible
solutions. One of the first attempts at solving the accessraoproblem in content-based systems
is presented in [5]. The authors combine role-based acaagsot (RBAC) with a distributed event
notification service. Unfortunately, the authors do notcdbg the details of their policy language and
the type of access control rules that can be supported hysysiem.

A number of systems have emerged that that support privapgiivasive environments. One such
system is the Confab system by Hong and Landay [20]. Theresareral differences in approach.
While our system is based in a content-based messaging enidd, their system is based on hybrid
blackboard and dataflow architecture, leading to potdntédifferent programming models. In Confab,
each data item is tagged with privacy preferences and a¢miresly relatively simple preferences are
supported. In contrast, our approach is to make a distimd¢igiween privacy policies and data. Privacy
policies generally come from users and can apply to multipla items, as opposed to being explicitly
attached to each data. Both approaches have pros and cgesdde on the threat model and the
targeted applications.

Campbellet al describe many issues in designing location-based peevasivironments [11]. The
authors explore challenges in building security and pyiviato pervasive environments and present a
solution based on the Gaia authentication service [27] aixt Rlouters [3]. Their main concern is
not policy controlled dissemination of location infornaatibut rather anonymous collection of location
information from different sensors.

Project Aura [15] is a large system for pervasive computimgrenments. Hengartner and Steenkiste
provide protection of location information in Aura [18, 19T heir work concentrates on policies for
environments where location information can come from iplélplaces (GPS phone, wireless networks,
or a person’s personal calendar). The authors deal witk$ssiitrust (which services can be trusted) and
delegation. Their solution is based on SPKI/SDSI certifisaf he policy language is similar to ours and
policy evaluation is similar KeyNote. The main differensehat their solution is designed for querying
location information (i.e., where is Alice? or who is in ro@02?) and not for dealing with distribution
of such information as in a publish subscribe system as itbestcin this paper.

3 Policy Model

Both the privacy as well as the security research commuriiiere examined issues in representing
policies, with P3P [1] being an example representation émifivacy community and techniques such as
role-based access control models (RBAC), trust managesystems, Chinese wall models, and Clark-
Wilson models in the security community [7]. Our work langdduilds on the work in the security
community because security policies have been a subjest@siigation for a long time and the maturity
of the tools for enforcing those policies. Also, our longateinterest is in taking a unified approach to
security and privacy because ultimately, security undeipgs are required to enforce privacy when
unauthorized users attempt to tap available data.

For the purpose of this paper, we will assume that all clientsnecting to a content-based publish

4

subscribe system are authenticated. The data securityeprab content-based publish-subscribe sys-
tems is further discussed by Opyrchal and Prakash [23]. imphper, we primarily focus on access
control and delegation aspects in publish-subscribe systnd their extensions to managing privacy in
pervasive environments.

3.1 Basic Definitions

Event Owner: Similarly to Belokosztolszket al [5], we introduce the notion of aasent owner in our
model. Event owner is an entity who has the right to authasiber entities to perform certain actions.
An event owner can authorize other users to subscribe toséist® receive events, or even delegate
authority to modify the policy for the events it owns. In magpplications, we will associate a different
owner for individual events within an event type. For exammvents of type “LOC_INFO” can be
owned by different users - if an event is abn#, then joe is the owner of that event. Each owner will
control access to the events it owns

Depending on the application, there may be one owner for anteschema, irrespective of event
contents, in which case the owner has complete control massa control rules for that event schema.
For example, if a service provides aggregated sensor dataay claim to be the owner of all that
data, irrespective of the ownership of individual eventrfrwhich the aggregate data was generated.
Users may only be able to choose whether to provide infoonativned by them to the service (under
appropriate terms), but not have rights to the aggregatied da
Application: The pub-sub system can support multipfeplications where applications refer to broad
categories such as a user-tracking system. In turn, eadicatjmgn consists of a number of event types.
Each application must have at least adleninistrator The administrator is a client of the pub-sub system
who has the right to delegate authority to perform diffe@etions within the application. For example,
the administrator can delegate tbenershipof different event types, add new event types, etc. Figure
2 shows the administrator of a LOC_APP application (locatimcking application) delegating rights to
userjoe when attributauseris equal to “joe”.

This paper does not present a new policy evaluation teckni@ur original prototype implementation,
used the KeyNote Trust Management System [8] for evaluainthchecking our security policy. We are
currently modifying our prototype to use the CPOL policy leesion engine developed by one of this
paper’s authors [9]. CPOL has a C++ interface for specifypnticies but its expressiveness is similar
enough to KeyNote’s that it is possible to show CPOL rules ikegNote-like syntax. Therefore, all of
our policy examples are based on the KeyNote language sywedbriefly describe the different fields
that are found in KeyNote policy specifications:

Authorizer - this is the entity granting the right. The authorizer cammbg entity in the system (provided
it is allowed to add policy rules). If an authorizer tries t@gt rights which it doesn't have itself, the
rule is rejected. The usexdminis implicitly granted all rights. This is achieved by wrigra rule with
authorizer being set to “POLICY?” (figure 2). Such rule is ajwdrusted. The authorizer field must not
be empty.

Licensee - this is the recipient of the right. The licensee field cantabna single entity, a list of entities,
or a wildcard!. A wildcard indicates that any user who satisfies the comligipecified in theondition
field is given the right.

Condition - this is the condition that is checked when policy rules auated. If the condition eval-
uates to “true” then the licensee is given the appropriahbtsi (in practice, conditions are evaluated
bottom-up until a rule with authorizer value “POLICY” evalies to “true”).

1in the KeyNote language there are no wildcards. To delegateight to any user who satisfies the condition, the licensee
field must be left out of the rule.

Authorizer: POLICY
Licensee: admin
Conditions: (app_domain == “LOC_APP”) -> “true”;

Authorizer: admin

Licensee: joe

Conditions: (app_domain == “"LOC_APP") &&
(evtType == "LOC_INFO") &&

(user == “‘joe") && (owner == “joe") -> “‘true';

Figure 2: Entity admin receives all rights for the LOC_APPRIlagation and grants ownership rights to
user joe when thaserattribute is “joe”

Authorizer: admin

Licensee: joe

Conditions: (app_domain == “LOC_APP”) && (eviType == “LOC_INFQO") &&
((action == “SUBSCRIBE") || (action == “RECEIVE”) ||
(action == "CHANGE_POLICY")) && (owner == “joe”)
-> “true’;

Figure 3: Assignment of ownership rights to the owner.

Signature - cryptographic signature verifying that it was the autheriwho wrote the rule (not shown in
most of our examples). The signature field is required inuddls except for the “POLICY” rules which
are read from file and implicitly trusted (unsigned rulesraweaccepted over the network).

The condition rulesare simple logical expressions and may usedh@ operator “&&” and theor
operator “||”. Condition rules may use a combination of é\atributes and external attributes. The
availability of external attributes depends on the impletation. They can include current time, number
of received events (by each subscriber), etc.

3.2 Access Control

We identify a number of actions that can be performed in ostesy. Each action has certain security
implications and should be controlled through an accessaagolicy. The supported actions are:

e authenticate - authenticate to the system

advertise - introduce a new event type into the system

publish - publish an event of a particular type

subscribe - subscribe to an event of a particular type

receive - receive an event

change palicy - modify the security policy (add/remove/maodify rules)

We consider authentication to be outside of our securityehold is used only to positively authen-
ticate users trying to perform one of the other actions. Antication must be performed in order to
enforce the security policy.

Each owner usually receives the right to publish, subscribe, receam] change policy for the
events/event types he owns. A KeyNote rule that would peitmstfor userjoe is shown in Figure 3.
Using that rule, usejoe receives the right to subscribe and receive his own evenielh®s to manage
policy for those events. The owngre can in turn authorize other users to perform certain actions

Authorizer: joe

Licensee: alice

Conditions: (app_domain == “LOC_APP”) && (evitType == “LOC_INFO") &&
((action == “SUBSCRIBE”) || (action == “RECEIVE")) &&
(owner == “joe”) -> “true”;

Figure 4: Usejoe grants the right to subscribe and receive his events of typ€ LINFO to usealice.

3.3 Delegation

One of the problems with some trust management systerdslégation of rights The KeyNote
system, which we use in our prototype, allows an entity teglkgle any rights that it possesses to other
entities. In figure 4, usalice is authorized to subscribe and receive all events withbatkiuserequal
to “joe”.

From a privacy perspective, the ability of a user to grantoalh subset of rights to another user,
irrespective of the ownership of data, is not always dekgralin a location tracking application, for
example, Joe might give Alice the rights to subscribe andivechis location events. But Joe may not
want Alice to, in turn, pass these rights to another user.

Alice could simply send each event about Joe to anotheryemtiiside of the pub-sub system. It is
beyond the scope of our system (and perhaps any softwaemgyki control Alice’s ability to leak the
data received outside the system, or even to republish da&swith a false claim of ownership within
the system. Alice would be a malicious user in that case aadstthe classical problem of digital rights
management, which we know is hard to do if users are maliciblmvever, we do want to provide a
basic solution for Joe to make sure Alice cannot inadvdsteiiow others to receive his events within
the system by simply adding a rule that grants such rightshiers, as allowed by KeyNote.

In order to restrict Alice’s ability to grant those rightseywrovide thechange_policyaction. In order
to allow a user to receive some events, Alice would have terenbew policy rule. To do this, she would
need the right to perform thehange policyaction for events owned by Joe. If Joe does not grant the right
to modify policy rules for his events to Alice, Alice will benable to delegate the rights to receive Joe’s
events without Joe’s permission (figure 4 shows Joe detep#ie rights to subscribe and receive events
but not to change policy). We note that the CPOL policy evidnasystem adds support for delegation
which is not present in KeyNote. This feature of CPOL allowegtér and cleaner control of delegation
rights.

3.4 Data Security Policy and Advertisements

An advertisement is a way for an authorized entity to introduce a new event inpe the system.
The access control policy is checked to make sure that theriskr is authorized to perform the action.
An advertisement describes the new event type and inditdadygpe of access control and data security
required. An example of an advertisement is shown in figuiddre information about issues presented
in this section can be found in [24].

Types of access control

The following are the possible types of access control:

No-control - no access control is performed for events of this type. adrg of the system are allowed
to subscribe and to receive events of this type.

Subscribe-time - access control policy is checked whenever a new subsamifpdr events of the par-
ticular type is entered. If allowed, the new subscriptioowstl be inserted into the subscription set,
otherwise it is rejected. Since subscription requests antra@led through the access control policy,

Application: LOC_APP
Event type: LOC_INFO
Attributes: user:string

building:string

room:integer
Access control: receive-subscribe
Security: confidentiality, integrity
Granularity: matching_set

Figure 5: An advertisement for event type “LOC_INFO”

individual events are delivered to the interested (matphsubscribers without further access control
checks.

Receive-time - access control policy is checked before events are detiverinterested subscribers. All
users are allowed to enter subscription requests for eeéthss type. When an event is published and a
matching process determines a set of interested subsgrtberaccess control policy is checked whether
each subscriber in the matching set is allowed to receivpdhtcular event.

The receive-time policy is useful when access control rdkggend on the environment or other dy-
namic values external to the event itself. For example, giicgiion may allow users to enter any
subscription but may limit the number of events received aghesubscriber to a particular number.
Subscribers may also be limited to receive events duringtacpkar time during the day or only during
weekdays (and not on weekends). It is impossible to chedettyoes of rules at subscribe time.
Receive-Subscribe-time - both subscription attempts and event receive attemptsargolled. This
policy combines the subscribe-time and receive-time adic

Data security guarantees

The data security guarantees field specifies which guasareerequired for events of this type. The

choices areonfidentiality, integrityandsender authenticityWWhen confidentiality is chosen, events are

encrypted while traveling through the pub-sub system. EBvare also encrypted when they are delivered
from a broker to its interested subscribers. Similarly, whaegrity is chosen, a message authentication
code (MAC) is added to each event.

Granularity of security guarantees
The granularity parameter applies only if confidentialitgsachosen as one of the security guarantees.
There are a number of ways confidentiality of events can béged. Events wito access contrand
confidentiality, must only be protected from outsidersifers not authorized to use the pub-sub system
at all). We call this type of granularityystem granularity

Other event types may require that only authorized subsriban gain access to all events of the
particular type (authorized subscribers can receive ahevof this type). This type of granularity
requires that all events are encrypted in such a way thatsbbss which are not authorized to receive
any events of this type cannot gain access to those eventsxample of this type of an application is a
stock quote service where users must pay in order to receivees, Once they pay, they can receive all
stock quotes. We call thisvent type granularity

Finally, some applications require that only the set of autled and interested subscribers can gain
access to events. This means that for each event, a set i@siee and authorized subscribers is deter-
mined. Then, only subscribers from this set should be abtgiio access to that event. This is useful
for applications where subscribers may be authorized tecsilie to and receive any event but can only
receive a limited number of such events. Similarly, thislgoaiseful when some users are allowed to

receive events only during certain times of the day. If evsoé granularity was used some subscribers,
who have already reached their event limit, could simpliffsmetwork traffic to gain access to more
events of this type (since they have the appropriate sgdeits). We call thisnatching set granularity

4 Prototype

We have built a prototype content-based publish subscrbte® to demonstrate the viability of
our model and policy language as described in section 3. Therd version implements most of the
discussed features. This section describes the impletrentd our pub-sub system and the next section
describes therivacy-awarelocation tracking application built on top of the pub-sulsteyn.

Our publish subscribe system is implemented in Java (wihettteption of KeyNote which is writ-
ten in “C”). The current implementation only supports egydiests in the subscription language. It
is straightforward to add additional operators to the stipton language and we are currently imple-
menting inequality operators. The matching algorithm isdobon tree matching algorithms presented
in [2, 4, 25]. We are currently integrating our system witk tBPOL policy evaluation engine which
will replace KeyNote. CPOL [9] was designed to offer expnemsess of the policy language similar
to KeyNote. The main advantage of CPOL is its much betteroperdince characteristics. Experiments
show that CPOL is several orders of magnitude faster thamNK&ywhen evaluating policy rules.

The subscription language suppontiidcards For example, the subscription

(user=="joe" && building=="EECS" && room=="*")

specifies interest in “LOC_INFO” events where tgerattribute is equal to “joe” anbuilding attribute
is equal to “EECS". In other words, the subscriber is intex@sn tracking user joe anywhere in the
EECS building.

4.1 System Architecture

Our pub-sub system consists of clients (publishers, sidesst owners, administrators) and the event
delivery system. The event delivery system is designed msisbof a network of event brokers. The
events will be routed between brokers using a combinati@hgafrithms described in [4, 25]. The current
implementation, designed as a proof of concept for our ggdafrastructure, supports only one central
broker.

A broker accepts client connections and performs requestddns. The event broker maintains a
database of users who have signed-up to use the system. Wvieeattat users sign-up off-line and that
during that process they generate a public/private keygradrsubmit their public key to the pub-sub
system. When connecting to the broker, clients must auttatatfirst. The broker can be extended to
support any type of authentication protocol. A simple golutan be arssh-likeprotocol based on the
public/private key pairs generated when signing up for thrgise. Currently, we implemented a simple
password-based authentication protocol.

Once authenticated, clients can make requests to add milmsws, publish events, or add new policy
rules (presumably to authorize other users to perform sat@na). We assume that the communication
between a client and a broker is encrypted. This can be athiby establishing aession keyluring
authentication and using that key to encrypt all messagesalt#&rnative solution is to use one of the
caching algorithms described in [23] to improve perforneanc

The architecture of an event broker is shown in figure 6. @lfent handleris responsible for all
communication with pub-sub clients. The client handlersparthe message, determines the protocol

Broker-to-Broker . Authentication
Handler Clisnthisnaler <):|> Handler

i el
g g

Content-Based .
Matching Engine f Security Manager

User Database

Security
Policy
Extension Manager KeyNote System
Extension ran Extension
Class Class

Figure 6: Broker Architecture.

type @uthenticate, publish, subscribe, change palicy, etc.), and calls an appropriaggotocol handler
method (in case of an authentication message, the cliedidramsesauthenticatormethods instead).

The protocol handleris the main part of the broker. It validates the message gassé from client
handler and decides what to do with it. In case of a valid mgsstne protocol handler checks with
the security managewhether the requested action is allowed. If the securityaganallows the action,
protocol handler calls appropriate methods in tietching enginenodule. The security manager uses
theKeyNote Systeid] to determine whether the given action is allowed underdirrent security policy
(the new prototype will use CPOL instead of KeyNote). Thislame by constructing aaction query
(based on the parameters passed in from the protocol haadigcalls the appropriate KeyNote method.
KeyNote, in turn, evaluates the action request in the comtiesurrent security policy and returtisie if
action is allowed ofalseif it is rejected.

The matching engine handles subscription requests by wiatgling new subscriptions to the match-
ing tree. In case of a publish request, the matching engiaecises the matching tree to determine the
set of all subscriptions matching the given event. Sinca&ugtions are annotated with subscriber id’s,
the search algorithm returns a list wfatching user id’¢o the protocol handler. If the event requires
an access control check before sending it to the matchedripds, the protocol handler must check,
for every matching user, whether she is authorized to reciig event. This is done by querying the
policy evaluation engine separately for each matching. Werare forced to use this, rather inefficient,
algorithm because of the KeyNote APl which only allows thenissions for one user to be queried at a
time. The new version of the system, which uses the CPOL engstead of KeyNote, supports groups
of users as well as roles which remove some of the inefficgnctection 6 describes the new version
of the policy evaluation engine in more detalil.

Sometimes, an event owner may want to authorize other uspesform an action based on attributes
which are not part of the event schema. In the location trackikxample above, assume that the user Joe
wants to grant access to all of his location events but ontinduegular work hours. Since the event
schema for LOC_INFO event type does not include time, it @dnd impossible to write such rule if we
were only allowed to use event attributes. Another such gkaums if Joe wanted to allow user Alice to
receive his events but only once an hour.

Our pub-sub system supporsternal attributedo enable users to write rules such as the ones de-

10

scribed above. External attributes are attributes whiehat part of the event schema but are added to
the event before security policy is evaluated. This allowdauwrite policy rules which depend on at-
tributes which are not included in the event at publish tifige extension manages the module which
determines whether external attributes should be addecptotizular event. By convention, external
attribute names hawextpre-pended to them.

For the extension manager to work, we must implement a dpediension claskr each application
domain. This extension class adds appropriate attribategnts of different types within the application
domain. The extension manager has two important API gatiscessEvent() which is called whenever
a new event is published. This method allows the extensiamager to keep track of different pieces of
information, such as the number of events received by eaat{asin the example above). This collected
information is then used to fill in external attributes by #uglAttribs() method. The addAttribs() API
call is used before evaluating whether the current actiatiesved under current policy.

5 Location Tracking Application

The application is a secure, privacy-aware, location traglsystem where location sensors (RFID
sensors) publish events wheneveag-wearingperson enters the sensor’s detection radius (the infras-
tructure for such system will be built into the new CSE bun@glat the University of Michigan).

We have implemented a secure and privacy-aware locatiokitigaapplication as presented in figure
1. The main goal of the application is to provide a flexible aadure location service while protecting
privacy of its users. Our location tracking application susiee security infrastructure of our pub-sub
system to give users the power to choose with whom they alimgvib share their location information
and under what conditions.

The application uses Radio Frequency Identification forifegs (RFID) sensors deployed through-
out the location tracking area (building, campus, city,)etdsers of the system carry small RFID badges
which are detected by the sensors. The sensors transmitititaitolocation publisherdone or more)
which are clients of the pub-sub system. The location phéiis convert the sensor data into pub-sub
events of typd.OC_INFQ The event schema for this event type is defined as follows:

[LOC_INFO: (user; String, building: String, room: String)]

The location publishers publish the events to the publidisatibe system. Users of the system can
then subscribe to location information about other pautints.

While potentially very useful, this type of an applicatiariroduces serious privacy concerns. Obvi-
ously, most of us do not want our location to be tracked byngtees or even by most people we know.
On the other hand, it may be beneficial for people working @angéime project to know where their
collaborators are at certain times (for example). Locaitidormation may also be necessary for certain
services that we may depend on.

It is important to understand that even if a person allowgmstho track her location, she may want
to restrict that access at times. A professor may allow etkeetrack his location only during normal
working hours. Another possibility is to restrict locatiorformation to two values - whether a person
is in her office or not. There are also people who do not wanh#westheir location information with
anybody.

A privacy-aware location tracking application has to allosers to control the flow of information
about them. It has to provide flexible policy language whilbbves users to express complex rules such
as the ones mentioned above. The location tracking apiplicanplemented on top of our pub-sub
system does just that.

11

1 Authorizer: POLICY
Licensee: location_admin
Conditions: (app_domain == “LOC_APP”) -> “true”;

2 Authorizer: location_admin
Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFQO”)
(action == “SUBSCRIBE’) -> “true”;

3 Authorizer: location_admin
Licensee: location_publisher
Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”)
(action == “PUBLISH’) -> “true”;

4 Authorizer: location_admin
Licensee: owner
Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”) &&
((action == “RECEIVE”) || (action == “CHANGE_POLICY"))
-> “true”;

5 Authorizer: Bob
Licensee: Alice || Eve || Nick
Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”) &&
(owner == “Bob”) && (action == “RECEIVE”) &&
((extTime == “WORK_DAY”) || (extTime == “WORK_NIGHT")) -> “true”;

6 Authorizer: Nick
Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFQO”) &&
(owner == “Nick”) && (action == “RECEIVE”) && (extCollaborator == “true”)
-> “true”;

7 Authorizer: Eve
Conditions: (app_domain == “LOC_APP”) && (evtType == “LOC_INFO”) &&
(owner == “Eve”) && (action == “RECEIVE”) &&
(building == extBuilding) && (room == extRoom) -> “true”;

Figure 7: Sample policy for the location tracking applioatif’LOC_APP”.

To allow users to control availability of the sensor dataudtibem, every user is granted ownership
of events about them (Rule 4 in figure 7). To get around thelprolof granting ownership individually
to each user (as in figure 2), the valueowfnerin the Licensee field is derived from the event itself and
passed to the policy evaluation engine.

Users can then delegate a subset or all of their rights (famgke rights to receive events) to other
users. By default, a user’s events are private and nobodhbutser can receive them.

The right tosubscribe to events is given universally to all users of the systemsThdone to allow
subscriptions such as:

[LOC_INFO:(user="*"building="EECS”, room="2246")]

where we want to know if anybody entered room 2246 in the EE@gibg. Since the event owner
is not known at subscribe time, it would be impossible to deavhich “subscribe” policy rules apply
to this subscription request. Since everybody is allowesltuscribe to all events, users can write rules
about who can actually receive the events. A small part optiliey is shown in figure 7 (note that we
are omitting parts of the KeyNote language syntax for glarit

Rule 1 allowslocation_adminto administer the “LOC_APP” application. Rule 2 allows alless to
subscribe to events of type “LOC_INFQO”. Rule 3 allows a spkciient,location_publisherto publish
events of type “LOC_INFO”. Rule 4 gives all users the ownarsights to events about themselves.
Bob gives permission to Alice, Eve, and Nick to receive hisrgsg in rule 5. The receive right is only
valid duringwork daysandwork nights Nick authorizes all users who are his collaborators toivece
his events in rule 6. The attribuextCollaboratoris evaluated externally. Finally, Eve allows all users to
receive her events but only if the subscriber and Eve arediisdime room in the same building (rule 7).

12

Alice: [user = “Eve” && building = “EECS” && room = “*"]
[user = “Bob” && building = “EECS” && room = “*']
[user = “Bob” && building = “GGBR” && room = “1005"]
[user = “Sam” && building = “EECS” && room = “3115”]
[user = “Tom” && building = “*" && room = “*"]
[user = “*” && building = “EECS” && room = “2246”]

Eve: [user = “*" && building = “*" && room = “*’]

Bob: [user = “Alice” && building = “ATL" && room = “*"]

Figure 8: Few example subscriptions from the location traglapplication.

user = Eve, building = EECS, room = 1005
user = Eve, building = EECS, room = 1003
user = Tom, building = GGBR, room = 1020
user = Alice, building = ATL, room = 133

user = Sam, building = EECS, room = 3227

Figure 9: Few example events from the location trackingiappbn.

We notice the use of external attributegTime, extBuilding, extRoom, andextCollaborator in
rules 5 - 7. The extension clagxternalLocationwas implemented to add the current time and the
location of the subscriber to the event attribdtes

Figures 8 and 9 show a number of sample subscriptions andlsdvem our location tracking system.

KeyNote assertions can be rather confusing to users ané whilpub-sub system allows submission
of policy rules using the full KeyNote syntax, we also offesimplified syntax which is automatically
converted to the KeyNote language. The simplified languageaires only the name of thécenseeand
the conditions. This is then converted into a full KeyNotseaon, signed with the user’s private key
and transmitted to the broker.

6 Evaluation

We want to evaluate our publish subscribe system and thédadaacking application in two ways.
One is to evaluate the performance characteristics of doispb system and its security infrastructure.
This includes testing the behavior of the system with difersizes of subscription sets, event publish
rates, and most importantly, different sizes of securitjcps. In addition to testing the performance of
the system, we would like to evaluate the system’s usagediysers. Interesting questions involved in
such evaluation include the percentage of users willindgv&oestheir locations, their trust in the system,
the types of privacy rules, etc.

As of this time, the new CSE building at the University of Migan (together with its network of
RFID sensors) is not completed yet and we are unable to perdiser evaluation. While our system is
implemented as described above, we cannot test it with seakwyet and we used a location generator
to test the application.

We were able to run performance tests but it became obviaisthik KeyNote system is not well
suited for this type of application. Our initial experimgntith about 100 security policy rules already
showed that it takes about 1 second to evaluate KeyNoteegueni an average system (2.8 GHz Pentium
4 computer). The KeyNote system worked well in a small pggtetsystem but it is not suited for a
larger implementation.

2Notice that the subscriber’s location is never revealedariy used for policy evaluation.

13

It was obvious from the beginning that KeyNote was not desilgfor this type of an application.
Recently, Borders, Zhao, and Prakash developed a newpeidbrmance policy evaluation engine called
CPOL [9]. Using different evaluation algorithm and cachieghniques, they were able to improve
evaluation performance by many orders of magnitude. Themamues that CPOL's performance is
more than adequate for high throughput applications suatoatent-based publish subscribe (or the
location-tracking system built on top). We are currentlyrkinog on a new version of the system using
CPOL instead of KeyNote. Based on the evaluation resultsai©POL paper as well as the performance
characteristics of our content-based matching algoritbyd], we expect that we will be able to support
a large location tracking system with our new prototype.

7 Conclusion and Future Challenges

We showed that the following types of access control andapyipolicies can be formalized in our
system:

e Where users wish to make their data available to only selacters.

e Where users wish to place computable conditions beforemgaddta available. Those conditions
can be enforced at subscription time (to prevent users fa@n subscribing to data) or at receive
time (to allow users to subscribe to data but potentiallyraotive it if it violates the predicate).

e Where users wish to control the ability of users to deledageights granted to other users.

Services such as privacy filters can be accommodated byngeidtemn as both a publisher and a
subscriber. As a subscriber, they have to be authorized éng ts receive their events. As a publisher,
however, the situation gets more complicated. We envisagestenarios, one in which the service acts
as the owner of filtered data and thus controls further digssion. This would typically be true of
services that aggregate data and can be dealt with in thedvark to a degree by treating the service as
an original source of the data. The second scenario is thatetvice republishes the filtered event, but
continues to associate the user with the event as far as licg poforcement is concerned.

We presented a solution to controlling delegation of ridiytplacing restrictions on the ability of users
to change policies. However, that solution has its limiagi. It handles the situation well when policies
are generally static. However, consider a scenario whergea Alice grants all rights to user Bob,
including the ability to delegate rights. Bob now subscsilbe Alice’s events and also delegates those
rights to Charlie. Unfortunately, Alice cannot simply mfydaer rule to take awaghange_policy(yight
of Bob to revoke Charlie’s rights; such a change will onlyeafffuture policy update operations of Bob,
not the past. From a privacy management perspective, a bettgion would be to determine delegation
rights dynamically. Our new policy evaluation engine, CR@llows direct control over delegation of
rights. CPOL supports three levels @¢legation rights Normal, Admin, DelegateNormal indicates
that the grantee cannot create new access rules. Admin daddielevels allow the grantees to add and
remove new rules on behalf of the event owner but with differestrictions on that delegate right.

In addition to the support for delegation, CPOL providespgupfor roles and groups. This feature
allows us to express rules that grant access to people bagbéiorole €.g, all nurses are granted the
right to monitor locations of all patients in a hospital). yWote, on the other hand, does not support
such rules directly

We would also like to provide support in our system to allowrsgo be prompted to “sign” a contract
if they wish to subscribe to a user’s data. Our plan is to mhkecbntract be a part of tHeonditionin
the policy rule (e.g., as a functional predicate Contragi&d(contractDocumentURL)), and motivated
by the realization that not all aspects of privacy terms aandptured as a computable predicate and are

14

better expressed in a legal framework or as understandetggebn the publisher and subscriber. Itis also
possible that a subscriber may wish a publisher to sign aacirtiefore it will accept the publisher’s data

or provide a service to the publisher. Designing a solut@rstich scenarios in our framework requires
further investigation.

Finally, we would like to apply our policies to not only refine events but also to events that may be
first archived in a database. A good and efficient solutiorafimlying the policies to queries on archived
events is not obvious. It is likely to require better intdgna of the policy framework with the query
system on the database.

References

[1] Mark S. Ackerman. General Overview of the P3P ArchiteetMIT World Wide Web Consortium,
1997. http://lwww.w3.0org/TR/WD-P3P-arch.

[2] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturmararkl Astley, and Tushar D. Chandra.
Matching Events in a Content-Based Subscription SystenPrdceedings of Principles of Dis-
tributed Computing (PODC '99)Atlanta, GA, May 1999.

[3] J. Al-Muhtadi, R. Campbell, A. Kapadia, D. Mickunas, a8d Yi. Routing Through the Mist:
Privacy Preserving Communication in Ubiquitous Computiryironments. InProceedings of
nternational Conference of Distributed Computing Systd@BCS 2002) Vienna, Austria, 2002.

[4] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Nagarajarao, Robert E. Strom, and
Daniel C. Sturman. An Efficient Multicast Protocol for Comtdased Publish-Subscribe Systems.
In International Conference on Distributed Computing Sysielune 1999.

[5] A.Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Bacamd K. Moody. Role-based access control
for publish/subscribe middleware architecturesPtacessdings of the 2nd International Workshop
on Distributed Event-Based Systems (DEBS'88M Press, June 2003.

[6] Ken P. Birman. The process group approach to reliableiliged computingCommunications of
the ACM 36(12):36-53, December 1993.

[7] Matt Bishop. Computer Security: Art and Sciencaddison-Wesley, 2003.

[8] Matt Blaze, Joan Feigenbaum, John loannidis, and AmgBloKeromytis. The KeyNote Trust-
Management System, Version 2, September 1999. RequesioRumeénts (RFC) 2704.

[9] Kevin Borders, Xin Zhao, and Atul Prakash. CPOL: HighfBamance Policy Evaluation. In
Proceedings of the 12th ACM Conference on Computer and Coinations Security (CCSpages
147-157, Alexandria, VA, November 2005.

[10] Luis F. Cabrera, Michael B. Jones, and Marvin Theimeerditd: Achieving a Global Event No-
tification Service. InProceedings of the Eighth Workshop on Hot Topics in Opega8gstems
(HotOS-VIII), EImau, Germany, May 2001. IEEE Computer Society.

[11] Roy Campbell, Jalal Al-Muhtadi, Prasad Naldurg, Gegtlh Sampemane, and M. Dennis Mick-
unas. Towards Security and Privacy for Pervasive ComputilmgProceedings of nternational
Symposium on Software Security (ISSS 200&yo, Japan, 2002.

15

[12] Antonio Carzaniga. Architectures for an Event Notification Service Scalable Wiode-
area Networks PhD thesis, Politecnico di Milano, December 1998. Avddalirom
http://www.cs.colorado.edutarzanig/papers/.

[13] Mary J. Culnan. Protecting Privacy Online: Is Self-Rikegion Working. Journal of Public Policy
and Marketing 19(1):20 — 26, 2000.

[14] Renee B. Ferguson. PreCache Unveils Netlnjector étatf eWeek, January 2003.
http://www.eweek.com/article2/0,3959,808317,00.asp.

[15] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steerkig®roject Aura: Towards Distraction-Free
Pervasive ComputingdEEE Pervasive Computing.:22-31, 2002.

[16] R. Gruber, B.Krishnamurthy, and E. Panagos. An Architee of the READY Event Notification
System. InProceedings of the Middleware Workshop at the Internafiddanference on Dis-
tributed Computing System&ustin, TX, June 1999.

[17] R.J. Harper. Why do and don’t People wear Active Baddge€ase Study. Computer-Supported
Cooperative Work4(4):297 — 318, 1995.

[18] Urs Hengartner and Peter Steenkiste. Protecting ActtePeople Location Information. Rro-
ceedings of First International Conference on Security emsive Computing (SPC 2008o0p-
pard, Germany, March 2003.

[19] Urs Hengartner and Peter Steenkiste. Implementingede€ontrol to People Location Informa-
tion. In Proceedings of 9th Symposium on Access Control Models arfthdlegies (SACMAT
2004) Yorktown Heights, NY, June 2004.

[20] Jason I. Hong and James A. Landay. An architecture fioagy-sensitive ubiquitous computing.
In Proceedings of MobiSys 200June 2004.

[21] B. Krishnamurthy and D. Rosenblum. Yeast: A generappge event-action systenEEE Trans-
actions on Software Engineeringl(10), October 1995.

[22] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Ske&he Information Bus - An Architecture
for Extensible Distributed System@perating Systems Revig7 (5):58 — 68, December 1993.

[23] L. Opyrchal and A. Prakash. Secure distribution of ésem content-based publish subscribe sys-
tems. InProceedings of the 10th USENIX Security Sympospages 281-295, August 2001.

[24] Lukasz OpyrchalContent-Based Publish Subscribe Systems: ScalabilitySaedrity PhD thesis,
University of Michigan, Ann Arbor, 2004.

[25] Lukasz Opyrchal, Mark Astley, Joshua Auerbach, GuthidBanavar, Robert Strom, and Daniel
Sturman. Exploiting ip multicast in content-based pubbsibscribe systems. Rroc. of Middle-
ware 2000 April 2000.

[26] PreCache. http://www.precache.com.

[27] Manuel Roman, Christopher K. Hess, Renato Cerqueir@n8l Ranganathan, Roy H. Campbell,
and Klara Nahrstedt. Gaia: A Middleware Infrastructure taBle Active SpacesEEE Pervasive
Computing 1(4):74-83, October-December 2002.

16

[28] Bill Segall and David Arnold. Elvin has left the buildin A publish/subscribe notification service
with quenching. IrProceedings of AUUGY9Brisbane, Australia, September 1997.

[29] Dale Skeen. Vitria's Publish-Subscribe ArchitectuRublish-Subscribe Overview. Technical re-
port, Vitria Technology Inc., 1996. http://www.vitria.oo

[30] TIBCO Messaging Solutionéttp://www.tibco.com/ software/enterprise_backbamegsaging.jsp.

[31] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Seculisues and Requirements for Internet-
Scale Publish Subscribe Systems. Froceedings of the HICSS-3Big Island, Hawaii, January
2002.

17

