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Abstract 
a 

EFFECT OF TUNABLE INDEXING ON TERM DISTRIBUTION AND 
CLUSTER-BASED INFORMATION RETRIEVAL PERFORMANCE 

by Timothy Lee Schorr 

The purpose of this study is to investigate the effect of tunable indexing on the structure 

and information retrieval performance of a clustered document database. The generation 

of all cluster structures and calculation of term discrimination values is based upon the 

Cover Coefficient-Based Clustering Methodology. Information retrieval performance is 

measured in terms of precision, recall, and e-measure. The relationship between term 

generality and term discrimination value is quantified using the Pearson Rank Correlation 

Coefficient Test. The effect of tunable indexing on index term distribution and on the 

number of target clusters is examined. 
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Academic, corporate, and government organizations are increasingly dependent upon 

very large databases for accessing vital information. Frequently, these databases contain 

full-text documents in either formatted or unformatted form. A user typically retrieves 

information from a document database by providing the system with a number of key 

words (query) which indicate the content of documents which the user wishes to view. 

The database's associated search engine accepts the user query and performs some type 

of database search in an effort to find documents which are relevant to the query. Some, 

or all, of the candidate documents are then presented to the user for further perusal. The 

system's determination of a document's relevance to a query is usually based on the 

similarity of the query to the document, or some portion of the document (e.g. the 

abstract). In general, the similarity value reflects the number of terms common to the 

query and the document, although some term normalization considerations are made. 

Documents and queries are represented by their constituent terms, referred to as indexing 

terms, and the entire collection of indexing terms for the database is called the indexing 

vocabulary. 

A number of database search methods exist, and the efficiency of the search method often 

determines the overall efficiency of the system. The document database and its 

associated search engine are referred to co1lectively as an information retrieval system 

(IRS). A schematic IRS is presented in Figure 1. An excellent overview of modern 

information retrieval concepts and systems is provided in [lo] and [12]. 
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Figure I .  Schematic Information Retrieval System (IRS) 

The performance of information retrieval systems is generally measured in terms of 

precision, recall, and another criterion known as e-meusure[l5]. Precision is defined as 

the ratio of retrieved relevant documents to the total number of documents retrieved. 

Recall is defined as the ratio of retrieved relevant documents to the total number of 

relevant documents in the database. The e-measure is defined in terms of precision and 

recall, as follows: 

where 0 2 e I 1, a is the importance of precision with respect to recall, and is defined as: 

where p is the importance of recall with respect to precision. For example, if equal 

emphasis is placed upon precision and recall, then f3 = 1 and a = 112. If no importance is 

placed on recall, then P = 0, a = 1, and~e-measure simplifies to e = 1 - precision. 



Similarly, if no importance is placed on precision, then /3 = oo, a = 0, and e = 1 - recall. 

In themcase of precision and recall, an increasing value indicates improved IRS 

performance, while the e-measure decreases in value with improved IRS performance. 

There are many ways of physically and logically constructing a document database. A 

simple method is to store a term description of each document and conduct a full-search 

(FS) of each document in response to a query. This is often called a brute force search 

method. Since document databases are generally quite large, FS methods are quite 

inefficient with regard to processing time. 

Another approach to database structure is to form clusters (sometimes hierarchical) of 

similar documents. With this approach, an inter-document similarity value is calculated, 

and documents with relatively high mutual similarities are grouped together into clusters. 

Again, the similarity value generally reflects the number of terms common to a pair of 

documents. The resulting database consists of a number of document clusters, where each 

cluster represents a collection of documents having a strong mutual association. Each 

cluster also has a representative document called a centroid. The centroid is not 

necessarily an actual document, rather it is a system generated document, contrived in 

such a way as to represent an average document within the cluster. In response to a user 

query, a similarity measure between the query and each cluster centroid is determined. A 

full search is then performed only on documents within the cluster(s) having the most 

similar centroid(s). A clustered document collection is often referred to as a partitioned 

document space. Clustered document databases may offer improved performance 



because the number of documents which are subjected to FS is greatly reduced. The 
= 

efficiencies of several information retrieval methods are presented in [ I ]  and [9]. 

This study deals exclusively with clustered document databases. Its purpose is to 

demonstrate how an indexing vocabulary can be tailored to achieve better IR 

performance. More specifically, it will attempt to show that an indexing vocabulary 

consisting of terms having the highest term discrimination values yields a cluster 

structure which delivers superior IR performance. The paper is organized as follows: 

section 2 provides background information and clustering concepts, section 3 deals with 

the concept of tunable indexing and term discrimination value, section 4 states the 

experimental hypotheses, section 5 details the experimental procedure, section 6 provides 

the study's results, and section 7 summarizes the study's conclusions and provides 

suggestions for future research. 



2 Indexing and Clustering in Information Retrieval Systems - 
* 

2.1 Indexing 

In an information retrieval system, a document is identified by its constituent terms. The 

process of identifyhg a document by its individual terms is called indexing, and the 

terms used by an IRS to identify member documents are collectively referred to as the 

indexing vocabulary. For a document database containing m documents (D,, D2, D3. 

... Dm) the indexing vocabulary will consist of n terms, and can be described by the 

vector T = (ti, t2, t3, .... tn). It is then possible to describe a document, Di, by an n 

dimensional document vector: Di = (d,,, d,,, d,,, ... d,, ), where dili indicates the weight of 

the jth indexing term in the ith document. The entire document database can then be 

identified by an m x n matrix, referred to as the D matrix. This approach is referred to as 

the vector space model [13 1. The terms may be weighted according to their importance, 

or frequency of occurrence, or they may be unweighted (binary), thus restricting dij to 1 

or 0. Typically, any document Di will be defined by several indexing terms, and similarly 

any given indexing term tj will be present in several different documents. The average 

number of unique terms per document is the depth ofindexing xd, while the average 

number of unique documents per indexing term is term generality t,. - Appendix 1 

provides a sample D matrix containing 5 documents defined by 6 unique index terms, and 

illustrates how xd and t, are determined. 

Intuitively, some of a document's terms are more descriptive of the document's content 

than others. For example, a document pertaining to information retrieval systems would 

5 



contain, but not be well described by, the following words: and, to, the, this, etc. 
- 

Conversely, the same document would contain, and be much better described by, the 

following words: information, retrieval, system, document, etc. Therefore, indexing 

vocabularies (and document vectors) usually exclude commonly used, non-descriptive 

terms. The same logic applies to queries and query vectors. 

Given two document vectors, it is possible to determine a similarity measure between 

them, s(Di, Dj). One method of determining s(Di, Dj) relies upon the cosine function 

and defines the similarity measure as: 

C di j*djk  
k =  I 

s(Di, Dj) = cos(Di, D,) = D! Di = 

I1 Di I1 I1 Di 11,  

A user query may also be represented by a vector, Qi = (qi,, qi2, qi3, ... qin ). Where qi, 

indicates the weight of the jth indexing term in the ith query. Again, the terms may be 

weighted or binary, and a similarity value, s(Qi, Dj), may be calculated between query 

vector Qi and document vector D,. An example similarity calculation is provided in 

Appendix 1. 

2.2 Clustering and the Cover Coefficient-Based Clustering Methodology 

The essential idea in clustering is that similar documents are grouped together to form 

clusters. The underlying reason is known as the "clustering hypothesis", which states that 



"closely associated documents tend to be relevant to the same requestsm[3]. Therefore, 
- 

grouping similar documents provides a browsing tool and accelerates the user's search 

process. This hypothesis validates the clustering of documents in a database. The search 

strategy in a cluster-based document database, known as cluster-based retrieval (CBR), is 

to first compare a query vector with each cluster centroid. Detailed query to document 

comparison is then performed only in selected clusters; generally. the most similar x 

clusters. 

The clustering algorithm used in this study is known as the Cover Coefficient-based 

Clustering Methodology ( ~ 3 ~ ) [ 2 , 3 , 5 ] .  The C3M algorithm is of the partitioning type, 

meaning that a document appears in only 1 cluster. Also, the resulting cluster structure 

is non-hierarchical, and is seed based. That is, each cluster contains a seed document, or 

simply a seed, which attracts other relevant documents to itself. The seed acts like a 

nucleation site for the cluster. The C ~ M  algorithm takes a probabilistic approach to 

defining the inter-document relationships. These relationships are described by an m x m 

C matrix, whose elements convey documentherm couplings. More formally: 

A D matrix that represents the document database {Dl, D2, .... Dm ,' described by the 
index terms T = {ti, t2, .... tn j is given. The Cover-Coeficient matrix, C, is a 
document-by-document matrix whose entries cij (1 l i ,  j l m )  indicate the probubility of 
selecting any term of Dj @om Di[3]. 

In other words, the C matrix indicates the relationship between documents based on a 

2-stage probability experiment. The experiment randomly selects terms from documents 



in 2 stages. First, one arbitrarily chooses a term tk from document Di, then tries to select 
m 

document Dj from this term. That is, check if document D, contains t,. Each row of the 

C matrix summarizes the results of this 2-stage experiment. This can be better 

understood by analogy. Suppose we have many urns, and each urn contains different 

numbers of balls of different colors. Then what is the probability of selecting a ball of a 

particular color? To find this probability, we first must randomly select an urn, then 

randomly select a ball from this urn. In terms of the D matrix, we have the following: 

From the terms (urns) of Di, choose one at random. Each term appears in many 

documents, or each urn contains many balls. From the selected term, try to draw D,, or 

from the selected urn try to draw a ball of a particular color. What is the probability of 

getting D,, or what is the probability of selecting a ball of a particular color? This is the 

probability of selecting any term of Dj from Di. An example of deriving the C matrix 

from a given D matrix is illustrated in Appendix 2. It is worth noting that the diagonal 

entries of the C matrix, cii, represent the probability of selecting document Di from any 

term in document Di. Therefore, cii (1 5 i < m) is a measure of the uniqueness of 

document D,, and is referred to as the decoupling coeflcient, 4 .  On the other hand, the 

sum of the off-diagonal entries for document Di represents the coupling of Di with the 

other documents in the collection. This sum is referred to as the coupling coefficient, yi, 

where yi = 1 - ( I  < i < m). 

Cluster seed documents must have proper degrees of uniqueness and inter-document 

coupling (i.e. proper values of 6i and vi). A good cluster seed document strikes a 



balance between being relatively unique within the collection. yet not being entirely 

compcrsed of highly unique index terms. Cluster seed documents are selected based upon 

cluster seed power, Pi, where 

The summation provides normalization to Pi, and for a binary matrix will simply be the 

number of terms in di. Documents having the highest cluster seed power are selected as 

cluster seeds, and any remaining document Di is assigned to the cluster containing the 

seed document Dj for which cij is greatest. 

Finally, it can be shown that the number of clusters, n,, in a document collection equals 

the summation of all Si values. Intuitively, this is best understood by considering 2 

separate document collections. The first is comprised of m unique documents (i.e. all cii 

values = 1 and all cij values are 0). In this case, each document represents an individual 

cluster so that n, = m. Also, since each cii = I,  

C cii = C Si = m = n,. 
i =  l i =  l 

The second collection consists of m identical documents (i.e. all cii values = lim and all cii 

values = Ilm). In this case, all documents are clustered into one group so n, = 1, and 



In each of these cases we see that the summation of decoupling coefficients equal n,. It 

was shown in [3] that for all cases, 

2.3 Term Weighting and Matching Functions 

Term weighting is a means of expressing the importance of the occurrence of a term in a 

document. Weighting schemes generally have three components: Term Frequency 

Component (TFC), Collection Frequency Component (CFC), and Normalization 

Component (NC). The weight of a term in a document or query (represented by odj and 04, 

1 < j < n, respectively) is then determined by the product (TFC x CFC x NC), and is 

expressed in the form document weighting scheme . query weighting scheme. The best 

weighting schemes for the test databases of this study, INSPEC and NPL, were established 

in [I] and [ I  I], respectively. For INSPEC the scheme is txc . txx, while NPL employs bxx . 

bpx. An explanation of these letter designations is provided in Appendix 3. The matching 

function for a query-document pair is then given by: 

The matching function for a centroid-query pair is the same as that for a query-document 

pair. Also, the centroid weighting schemes are the same as those used for documents. 



3 Concepts of Tunable Indexing 
- 

3.1 Concept of Term Discrimination Value 

An ideal IRS would respond to any given query by retrieving only documents which are 

relevant to the query, and by retrieving all documents which are relevant to the query; 

thereby yielding precision and recall values of 1 .O. The system would easily discriminate 

between relevant and non-relevant documents. In practice, however, the process of 

discriminating relevant from non-relevant documents is difficult and imperfect. 

Intuitively, the process of document discrimination becomes easier as the documents 

themselves become more unique. To demonstrate this, consider 2 document vectors Di 

and Dj, and their similarity value s(Di, Dj): where s(Di, Dj) increases as the 2 documents 

contain more and more common terms. If s(Di, Dj) is relatively high, it may be quite 

difficult to discriminate between Di and Dj. Correspondingly, it would be difficult to 

formulate a query which retrieves either Di or Dj, but not the other. On the other hand, if 

s(Di, Dj) is relatively low, then it becomes comparatively simple to discriminate between 

Di and Dj, and one can easily formulate a query which retrieves one but not the other. 

Extending this logic to an entire document collection, one can see that in order to 

improve precision and recall it is necessary to lower the average inter-document 

similarity for the entire collection. More formally, it is desirable to minimize the 

following: 

m m 

F = C C s(Di, Dj) where i + j. 
i = 1  j = 1  

(1) 



When eq. (1) is minimized. the average similarity between document pairs is smallest and - 
each document may be retrieved without also necessarily retrieving its neighbors. Also. in 

a collection where there are several relevant documents for a given query. it will be 

possible to retrieve all relevant documents, while rejecting the non-relevant documents. 

Thus, high precision and recall outputs are assured. 

These concepts are easily and naturally applied to clustered document databases. A 

cluster structure having widely separated centroids and high intra-cluster similarity will 

optimize precision and recall outputs. When considered in aggregate, such a structure 

would be referred to as having highly decoupled, highly cohesive clusters. 

The computational cost of eq. (1) can be lowered significantly by computing a centroid G 

for the entire document collection. Each centroid entry gj (1 < j 5 n) of G is then defined 

as the average weight of ti in all the m documents: 

The approximate document space density, Q, can then be defined as follows: 

m 

Q = (l/m) t: S(di, G). 
i=  l 

Accordingly, document collections with greater (lesser) separation of document 

,description vectors will have lower (greater) Q value. It follows that the careful selection 

of indexing terms can impact the space density value for the entire document 

collection [13]. 



Term discrimination value is used to measure how an indexing term affects the overall 
= 

separation of a document collection[4,6]. The deletion of any term tj from T will change 

the indexing vocabulary and the description of documents. Since Q is a function of 

document descriptions, such a change will also change the document space density for the 

entire collection. The deletion of tj (1 I j I n) will set dij (1 5 i I m) and gj to null. The 

new value of Q, Qj, will be as follows: 

where d/ = (di di2, . . . , di, j-1, di j+ 1, . . . , din,) and 
Gj = (gl, g2, - - . , gj-I, gj+l, - . - . gn). 

The difference Qj - Q reflects the change due to the deletion of tj . For example, if the use 

of tj in the indexing vocabulary increases the separation of documents, then its effect will 

be to decrease the document space density. Consequently, the deletion of ti will decrease 

the separation of documents, increasing the document space density. It follows that Qj - Q 

will be greater than zero. Figure 2 demonstrates the effect of deleting such a term. The 

difference Qj - Q is defined as the term discrimination value of t j  , TDV,. TDVj has the 

following properties: 

(a) TDVj > 0 for a good discriminator tj, 

(b) TDVj x 0 for an indifferent term tj, 

(c) TDVj < 0 for a poor discriminator tj. 



Selecting the terms of an indexing vocabulary based on their TDVj has the potential to 

enhance the performance of a cluster based IR system in terms of precision, recall and e- 

measure. Using only the best discriminators. a structure of widely separated, highly 

cohesive clusters should be obtained. 

X X 

X X. 

X X X  

X 

Figure 2. Shows separation of documents when a term tj with TDVj > 0 is (a) 
included in the indexing vocabulary and (b) deleted from the indexing 
vocabulary. 

3.2 Cover Coefficient Determination of TDV 

The concept of a decoupling coefficient, 6i, was previously discussed. The average 

decoupling coefficient 6 is defined as: 



The document space density (Q) is similar to the overall decoupling coefficient 6. If 

document descriptions are more distinguishable (i.e. Q is low), then the documents are 

more decoupled from one another (i.e. 6 is high). Conversely, when Q is high (i.e. the 

documents are less distinguishable) 6 will be low. Using this concept, we may use the 

CC method to compute TDV's [4]. Assuming the deletion of term t, does not alter the 

number of documents (i.e. each document is defined by at least 2 terms), then we may use 

m 
6 = 2 6; by ignoring the divisor m. We know, however, that C 6i is simply the number 

i =  1 

of clusters which are expected to exist within the collection. In a manner analogous to 

computing TDVj as Qj - Q, we may compute TDVl as n, - n,,, where n, and n,, are, 

respectively, the number of clusters before and after deleting term t,. In this context, 

TDVl has the following properties: 

(a) nc > ncl for terms which are good discriminators, 

(b) nc < ncl for terms which are poor discriminators, 

(c) n, = ncl for terms which have no description significance. 

This shows that the concepts of space density (Q) and average decoupling of documents 

(6) are inversely related. It is worth mentioning that the diagonal entries of the C matrix, 

cii (I I i I m), are not related to s(Di, Di), since s(Di, Di) = 1, while cii = 1 only if Di is 

entirely unique. Also, if all documents in a collection are entirely unique, then all 6i = 1, 

n, = rn, and all TDV's will be equal to zero. To repeat, TDVI will be determined by 



n, - n,,, where good, poor, and indifferent discriminators will have positive, negative, and 
- 

near zero values, respectively. 

It is important to note that TDV's are relative for a given document collection. In other 

words, valid comparisons of TDV's cannot be made between different document 

collections even if the same term is considered in each collection. Furthermore. while 

different means of calculating TDV's will not assign identical values to a given term, the 

different methods should demonstrate consistency in the relative values assigned. In 

fact, the degree of consistency of the CC method with accepted similarity based 

calculation methods was documented for a small database in [4]. That study showed that 

the consistency of the CC based TDV's with these other methods is excellent for 

determining poor discriminators (negative TDV), while there is some divergence between 

all methods in determining good discriminators. The study also showed the CC method 

to be more efficient in terms of computational complexity than other accepted methods. . i 

For other methods of calculating TDV see [6,7.8,14]. 

3.3 Tunable Indexing 

We may apply the concepts of TDV and CC to control the number of clusters, N,, within 

a document collection. Tunable indexing is the process of selecting appropriate indexing 

terms to control N,, and the selection of index terms is based upon individual TDV. 

Since terms having relatively high TDV make documents more unique, their addition to 

the indexing vocabulary will increase N,, while terms with relatively low TDV decrease 

N,. When all terms are included in the indexing vocabulary, the original D matrix is used 

16 



and the natural number of clusters n, exists (i.e. N, = n,). The tunable indexing procedure 
- 

is outlined as follows[4]: 

(1) Determine TDVl for eachyndex term tl, using the CC methodology as 
previously described, 

(2) Sort terms according to their TDV's , 

(3) Beginning with the term having the highest (lowest) TDVl , select index 
terms until each document is defined by at least 1 term. This will 
yield the maximum (minimum) value for Nc , and nlnod terms are used 
for indexing, 

(4) Continue adding index terms until desired N, is reached, or until all 
terms have been used. When ail terms are used, Nc = nc. 

This algorithm produces a general graph of N, versus number of indexing terms used I as 

given in Figure 3. Point A of Figure 3 indicates the maximum possible number of 

clusters, N, ,,. Point A is reached when, beginning with the term having the highest 

TDV, and working toward terms having lower TDV,, terms are successively added to the 

D matrix until all documents are defined by at least 1 term. At this point, the D matrix 

(referred to as the maximal D matrix) contains n,, terms and is of dimension m x n,,,. 

The portion of the curve between points A and B depicts the effect of adding to the 

maximal D matrix, terms with successively lower TDV, . Point C of Figure 3 indicates 

the minimum possible number of clusters, N, ,in. Point C is reached when, beginning 

with the term having lowest TDV, and working toward terms having higher TDV,, terms 

are successively added to the D matrix until all documents are defined by at least 1 term. 

This time the D matrix (referred to as the minimal D matrix) contains n,,, terms and is of 



dimension m x nmin. The portion of the curve between points C and B illustrates the 
& 

effect of adding to the minimal D matrix, terms with successively higher TDV, . Point B 

represents the natural number of clusters n, which exists when all indexing terms are used 

for cluster generation. 

nmin nmax n 

Figure 3. General Graph of Number of Clusters vs. Number of Terms 

A brief explanation of the relationship between nmi, and n,,, is appropriate. As shown 

in Figure 3, nmi, < n,,. Intuitively, this makes sense since nmin is arrived at by using 

terms of low TDV, to describe the document collection. Such terms usually have 

relatively high t,, so that fewer terms are necessary to achieve the minimal D matrix. 



Terms having high TDV, generally have lower t,, a therefore, more such terms are required 
- 

to reach the maximal D matrix. 

4 Hypotheses 

4.1 Hypothesis of the Relationship of TDV to Term Generality 

Terms with high term generality are, by definition, found in a large number of different 

documents. Such terms do little to distinguish any of these documents from any of the 

others. One would expect then, that terms with high t, would have low TDV. On the 

other hand, terms with low t, are found in few documents, and are important in 

distinguishing these documents from all other documents. It follows that terms having 

low t, should have high TDV. This is the first hypothesis to be tested. 

This hypothesis .is somewhat at odds with what has been observed with similarity based 

measures of TDV[l4]. In that case, terms with exceptionally high tg were found to have 

very low TDV, terms with moderate t, had relatively high TDV, and terms with very low 

t had TDV's of near zero. 
,g 

4.2 Hypothesis of the Effect of Tunable Indexing on Information Retrieval 
Performance 

Term discrimination value can be determined for each of the n indexing terms. Since 

terms with relatively high TDV make individual documents more distinguishable, they 

tend to increase 6, as well as the number of clusters N, in the collection. Conversely, 

terms with relatively low TDV make individual documents less distinguishable, tend to 



decrease 6, and decrease the number of clusters N, in the collection. The maximum 

- 
(minimum) value for N, will be realized when the indexing vocabulary consists of the 

nnlax (nmin) terms having the highest (lowest) TDV. Also, N, may be varied on the range 

from Nc niin to Nc max. 

Intuitively, some cluster structures should be superior to others and deliver 

correspondingly superior information retrieval performance. Since improved 

performance depends upon the system's ability to distinguish between relevant and 

nonrelevant documents, it is reasonable to hypothesize that the cluster structure in which 

documents are most unique should give the best information retrieval performance. 

Therefore, the IR performance for the case in which N, = N, ,,,, and cluster generation is 

based on the n,,, index terms having the highest TDV's, should be superior to the other 

cluster structures. Contrarily, the cluster structure in which documents are least unique 

should yield the worst information retrieval performance. This structure will be realized 

when N, = N, and the nmin index terms with lowest TDV's are used for cluster 

generation. This is the second hypothesis to be tested. 

4.3 Hypothesis of the Effect of Tunable Indexing on the Number of Target Clusters 

A cluster which contains at least 1 relevant document for a query is called a target clztster. 

The number of target clusters accessed in response to query j is denoted by n,,-j, while the 

average number of target clusters accessed in response to a query set is represented by n,, 
n 

(i.e. n,, = C ntCej ln). The range of nt,-j is determined by the lesser of 2 values: the number 
j =  1 

of relevant documents to query j (denoted rdj), or the number of clusters N,. For example, 



if query j has 15 relevant doc 1 cats  and N, = 30, then nt,-, may be at most 15 

Alternatively, if query i hr 5 relevant documents and N, = 10, then n,,, may be at most 

10. It follows that n,_ is i mited by the lesser of the average number of relevant documents 

for a query set (rd) or N 'rr the cluster structure. 

Intuitively, one expect .at as a clustering structure improves. the ratio of average target 

clusters to the limitin. .value of average target clusters (i.e. n,,/rd or nt,/N,) should 

decrease. It follows .hat as the cluster structure is modified by tunable indexing, the 

structures with lorn :r values of ntc/rd or n,,/N, should deliver correspondingly higher 

precision and rec* i" and lower e-measure values. Since it is anticipated that as N, 

increases IR * -  rnance will improve, it is expected that as N, increases the value of 

n,,/rd (or . 11 decrease, reaching a minimum when N, = N, ,,,. This is the third 

hypothe s ted .  

4.4 H . .\ -is of the Effect of Tunable Indexing on Indexing Term Distribution 

The n .: of unique clusters in which an indexing term exists is called the cluster 

gener ,' jy. The cluster generality for index term j is denoted by c,, and the average 

cluc .( generality for all index terms is denoted by c, (i.e. c, = C c,ln). A discussion of 
.j = I 

c , -:ld c, is quite similar to that of n,,-, and n,,, respectively. A significant difference is 

f at c, is limited by the lesser of the term generality for term j (t, ) and N,. To illustrate 

this point, consider a case where tj appears in 15 unique documents (i.e. t, = 15) and N, = 

30. Clearly, c, w u f d  be limited to a value of 15. On the other hand, if t, = 30 and N, = 

15, then cg is at most 15. 



Again, it is expected that as cluster structures improve, this improvement should be 
- 

manifest in a lower ratio of c,/t, or c,/N,. Furthermore, improved values of precision, 

recall, and e-measure should be associated with cluster structures having low values of 

c,/t, -- -C (or c,/N,). It is therefore expected that as N, increases c,/t, (or c,/N,) should 

decrease, reaching a minimum when N, = N, ,,,. This is the fourth hypothesis to be 

tested. 



5 Experimental Procedure 

5.1 Databases and Computing Environment 

This study uses 2 databases, INSPEC and NPL, which have been used in numerous other 

research efforts. The INSPEC database contains documents pertaining to computer and 

electrical engineering topics, while NPL documents deal with topics in physics. Database 

characteristics are shown in Table 1. 

Symbol 

Table 1. Summary of Databases 

Meaning I INSPEC I NPL 

number of documents in database 1 12.684 1 11.429 

number of distinct terms in database 

number of clusters using CC 

average term generality 

average depth of indexing 

average number of termslquery 

32.5 

number of queries provided with 
database 

average number of relevant 
documents/query 

20.0 

7 7 100 



All programs developed to support this study are written in the PascalIVS language - 
version 2.0, and are compiled and executed on Miami University's IBM mainframe. 

5.2 Experiments in Tunable Indexing 

A program was written which calculates the term discrimination value for each indexing 

term of the document database. Additionally, this program determines the term 

generality for each indexing term. The output of this program consists of 2 text files. 

The first file contains term numbers and their associated term discrimination values, 

sorted in ascending order according to TDV. The second file contains term numbers and 

their associated term generalities, sorted in ascending order according to term generality. 

The file of term numbers and their associated TDV's provided the input for a second 

program which, starting with the indexing term of highest or lowest TDV, would select 

the minimum number of terms (nmin or n,,) necessary to define all m documents by at 

least 1 term. Therefore, starting with the term of highest (lowest) TDV, the term list 

which would yield N, ,, (N, clusters was established. Having thus obtained the list 

of index terms which would define the 3 critical points of Figure 3 on page 18 (points A, 

B, C), additional terms were added (either in ascending or descending order of TDV's) to 

achieve the portions of Figure 3 connecting points A and B, as well as points C and B. 

Index terms were added to the maximal and minimal D matrices in discrete blocks, each 

comprising 20% of the difference either n - nmi, or n - n,,,. Each modified matrix was 

used as input to a clustering program, and the corresponding cluster structures generated. 



Finally, both text files were used as input to a statistical analysis program. Since one file 
- 

contained term numbers ranked according to TDV, and the other file contained term 

numbers ranked according to term generality, the relationship between TDV and t, could 

be measured using a Pearson Rank Correlation Coefficient. 

5.3 Experiments in Information Retrieval 

An information retrieval program was developed to measure the performance of each of 

the aforementioned cluster structures in terms of precision, recall, and e-measure. For 

each cluster structure, the entire set of database queries was used (1 00 queries for NPL, 

77 queries for INSPEC), and average values of the performance parameters were 

obtained. Furthermore, cluster centroid length was varied in order to examine its effect 

on information retrieval performance. The selection of terms to be used in cluster 

centroids is based on term generality. Specifically, a cluster centroid of length 1 will 

contain the I terms with highest tg within the cluster of interest. Centroid lengths of 125, 

250, 500, and 750 terms were used for each cluster structure. The same matching 

function is used for both centroid-query and document-query matching. 

To demonstrate the validity of this study's cluster structures, a modified version of Yao's 

theorem for calculating block accesses is used [16]. This modification allows Yao's 

theorem to be applied to clustered data collections, as was proven in [3]. The modified 

'theorem follows: 

Theorem: Consider a partition of m documents with nc number ofnon-overlapping 
clusters and with each cluster having a size of / Cj / f o r  1 S i  Snc. ! f k  documents are 
randomly selectedfrom m documents, the probability Pj that cluster Cj will be selected is 
given by 

2 5 



Accordingly, for a randomly generated cluster structure and a query with k relevant 

documents, the number of target clusters is given by the summation (PI + P2 + . . . P,,,). 

Thus, the number of target clusters for any random strucuture and an associated query are 

easily determined. Tables 2 and 3 present the average number of target clusters for each 

C3M generated cluster structure, as well as the average number of target clusters for the 

corresponding random cluster structures, n,,-,. As can be seen, the C3M structures are 

always better than the random structures. This data is in good agreement with that 

presented in [3] 

Table 3. Comparison of Actual Average Number of Target Clusters intc) with the Average 

Table 2. Comparison of Actual Average Number of Target Clusters intc) with the Average 
Number of Target Clusters for a Random Structure (ntc-,) for INSPEC. 

N, 

nt, 

ntc- 

r 

Number of Target Clusters for a Random Structure intc-,) for NPL. 

106 

19.49 

27.70 

45 

14.21 

20.46 

N, 

nt, 

nt,- 

155 

20.56 

29.67 

352 

14.53 

18.92 

351 

14.53 

18.92 

I r l  I I I I 

222 

22.81 

31.62 

354 

14.56 

18.92 

I 

312 

23.49 

32.80 

I 

356 

14.56 

18.93 

477 

24.44 

33.77 

360 

14.57 

18.94 

358 

14.56 

18.93 

517 

24.57 

34.06 

369 

14.66 

18.98 

543 

24.68 

34.21 

382 

14.88 

19.08 

393 

14.84 

19.16 

598 

24.83 

34.44 

563 

24.68 

34.33 

580 

24.64 

34.38 

403 

14.87 

19.21 

412 

14.92 

19.24 



6 Results 

6.1 Relationship between Term Generality and Term Discrimination Value 

It was hypothesized that terms which have relatively high term generalities should have 

correspondingly low term discrimination values. This is because such terms are 

relatively common and do little to make their associated documents unique. 

Equivalently, terms with relatively low term generalities were hypothesized to have 

relatively high term discrimination values. 

A Pearson rank correlation test was conducted between t, a and TDV for INSPEC indexing 

terms. The resulting rank correlation coefficient was 0.33 with a null hypothesis 

probability of 0.000 1. These numbers indicate a definite, moderately strong relationship 

between t, and TDV. Specifically, that terms with high TDV have low tg. It is believed 

that the value of the rank correlation coefficient is lowered by the large number of data 

entries (n = 14573) and the fact that a large number of entries assume the same rank. For 

example, nearly half of all the terms have a term generality of 1. Even so, these results 

do support the hypothesis that as an indexing term's t, increases, its TDV decreases. 

The Pearson rank correlation test was not conducted for NPL. The indexing vocabulary 

of this database is highly controlled (e.g. t, = 1 for over % the terms), so it was believed 

the results of such a test would not be reliable or realistic. 



6.2 The Effect of Tunable Indexing on Information Retrieval Performance 

The minimum number of terms necessary to define all m documents of the test databases 

was determined. As described earlier, terms were selected in either ascending or 

descending order of TDV. As expected, the maximal D matrix consisting of the n,,,,, 

indexing terms with highest term discrimination values produced the maximum number 

of clusters N, ,,,. Similarly, the minimal D matrix consisting of the nmi, indexing terms 

with lowest term discrimination values produced the minimum number of clusters N, 

Table 4 summarizes these results for both databases. As additional indexing terms were 

added to the maximal or minimal D matrix, the resulting number of clusters approaches 

the natural number of clusters n,. Table 5 summarizes the pertinent parameters of these 

cluster structures for INSPEC, while Table 6 does the same for NPL. 

Table 4. Summary of Nc max, Nc min, nmax, and nmin for Databases 

NC 

m ax 

598 

4 12 

nmin for minimum 
number of clusters 

832 

7453 

Database 

INSPEC 

NPL 

NC 

rnin 

4 5 

35 1 

nmax for maximum 
number of clusters 

14540 

7472 



Table 5 .  INSPEC Cluster Parameters 

Table 6. NPL Cluster Parameters 

It was postulated that a cluster structure in which documents are better distinguished from 

one another would produce better information retrieval performance. Furthermore, it was 

thought that this cluster structure would be produced by using the maximal D matrix 

29 



containing the n,,, index terms with highest TDV, resulting in N, ,,, clusters. The 

experimental data validate this postulation for both INSPEC and NPL databases. Table 7 

summarizes precision values obtained from the INSPEC experiments using a centroid of 

length 250 terms, and N, values of N, ,,,, N, ,,, and n,. To ensure the validity of 

comparison between these three cluster structures, the precision values presented are 

associated with the number of target clusters necessary to access a constant number of 

documents. Approximately 10% of the database is selected, since it has been shown that 

precision values begin to saturate at this point[3]. Also, since precision is defined as the 

ratio of retrieved relevant documents to the total number of documents retrieved, 

meaningful comparison of precision values requires fixing the number of retrieved 

documents. This is consistent with many IR systems which offer the option of selecting 

the number of documents to be returned to the user. Accordingly, 1200 documents are 

selected for INSPEC. The number of target clusters necessary to access 1200 documents 

for N, ,,,, n, and N, ,, are 5,45, and 57, respectively. Table 7 provides precision values 

for INSPEC when 10,20, and 30 documents are returned, while Table 8 provides 

INSPEC recall values when 10,20, and 30 documents are returned. Table 9 presents 

e-measure data for INSPEC when P = 1 (i.e. equal importance is given to precision and 

recall), and 10,20, and 30 documents are returned. Tables 10 through 12 provide the 

same data for NPL. The NPL data is based on the number of target clusters necessary to 

*access 1 100 documents, again approximately 10% of the database. The number of target 

clusters necessary to access 1 100 documents are 34, 35, and 40 for N,,,,, n,, and N, ,,,, 

respectively. 



Table 7. INSPEC Precision Values with 10% of the Documents Accessed 

Table 8. INSPEC Recall Values with 10% of the Documents Accessed 

Number of 
Documents retrieved 

Nc min - 

"c 

Nc ,ax 

Table 9. INSPEC e-measure Values (P = 1 .O) 

Number of 
Documents retrieved 

Nc min 

*c 

Nc ,ax 

30 

.I74 

. I  84 

.I90 

10 

.258 

288  

.299 

2 0 

.2 10 

,224 

228 

10 

,082 

.095 

'100 

Number of 
Documents retrieved 

Nc min 

nc 

Nc max 

20 

.I29 

.I42 

.I50 

2 0 

3 6 0  

.850 

.840 

10 

.890 

.870 

.860 

30 

.I57 

.I69 

. I  82 

30 

.850 

.840 

.840 



Table 10. NPL Precision Values with 10% of the Documents Accessed 

Table 1 1 .  NPL Recall Values with 10% of the Documents Accessed 

Number of 
Documents retrieved 

Nc min 

"c 

Nc max 

Table 12. NPL e-measure Values (P = 1 .0) 

10 

.240 

2 4 7  

.246 

Number of 
Documents retrieved 

Nc min 

nc 

Nc max 

2 0 

.I 79 

,189 

.I93 

10 

. I  44 

.I45 

.I44 

Number of 
Documents retrieved 

Nc min 

n c 

Nc max 

3 0 

.I45 

.I52 

.162 

2 0 

,192 

.I99 

,200 

10 

.850 

.850 

.850 

3 0 

.225 

230  

.240 

20 

,840 

.840 

.830 

30 

.850 

.840 

.830 



Although the data in Tables 7 through 12 show improved infomation retrieval 

performance parameters for the cluster structure with N, = N, ,,,, the improvement does 

not at first glance seem significant. This is especially true for the NPL data. The data, 

however, may be viewed in another manner which more clearly demonstrates the 

improvement in information retrieval performance. Specifically, for each cluster 

structure (N, ,,,,, n,, N, ,,,), one should consider how many documents must be searched 

to achieve a given level of precision. recall, or e-measure. This will be the number of 

target clusters multiplied by the average cluster size. Table 13 shows for INSPEC the 

number of target clusters and the associated documents required to achieve a precision 

value of ,275, when 10 documents are returned and a centroid of 250 terms .; used. Table 

14 contains the same information for NPL, except that a precision value of .20u 1s ., ' 

since .275 is not attainable for all NPL cluster structures. Table 13 shows a 28.85% 

decrease in the number of searched documents from the case where N, = n, to the case in 

which N, = N, ,,,. Similarly, Table 14 shows a 22.46% decrease for NPL. 

Table 13. Target Clusters and Associated Documents Required to Achieve 
Precision of .275 (INSPEC) 

number of 
clusters 

Nc min 

nc 

Nc max 

number of target 
clusters 

I I 

19 

17 

-- 

number of 
documents 

3100 

506 

3 60 



Table 14. Target Clusters and Associated Docutnents Required to Achieve 
Precision of 200 (NPL) 

number of number of target / number of 

Although not presented here, the trends shown in Tables 7 through 14 are immune to 

varying centroid lengths (centroid lengths of 125, 250, 500, and 750 terms were used). 

Similarly, although the data presented has focused on only 3 cluster structures (N, ,,,, n,, 

N, ,,,), all trends in precision, recall and e-measure values are consistent over the 

intermediate cluster structures. This supports the hypothesis that as documents within the 

collection become increasingly unique, IR performance improves, and as the documents 

become less unique, IR performance degrades. 

clusters 

6.3 Effect of Tunable Indexing on the Number of Target Clusters 

It was hypothesized that as cluster structure improves n,,/rd (or n,,/N, ) should decrease. 

and that this ratio should be minimal for the case where N, = N, ,,,. Also, it was believed 

that as the value of n,,/rd decreases (for all cases, with both INSPEC and NPL, rd is found 

to be more limiting than N,, therefore only n,,/rd will be used: INSPEC rd = 33.0 

clusters 

documents/query, while for NPL rd = 20.8 documents/query), the IR performance of the 

associated cluster structure should increase. Contrary to this hypothesis, however, it is 

documents 



found that as the number of clusters increases, the ratio n,,lrd also increases. Furthermore, 

the highest value of n,,/rd is associated with the cluster structure giving the best IR 

performance. Tables 15 and 16 summarize this data for INSPEC and NPL, respectively. 

6.4 Effect of Tunable Indexing on Indexing Term Distribution 

It was hypothesized that colt, (or c,/N, ) should decrease as N, increases, and that the 

minimum value of c,/t, (in all cases, for both INSPEC and NPL, c, -- values are limited by t,, = 

rather than N,: INSPEC t, = 28.29, NPL t, = 30.45) would be associated with the cluster 

structure providing the best IR performance. Again, however, it was found that c,/t, - - 

increases as the number of clusters increases, and the maximum value of c,/t, - a corresponds 

to the cluster structure yielding the best IR performance. Table 17 summarizes these 

results for INSPEC, while Table 18 summarizes for NPL. 

Table 15. Summary of INSPEC Target Cluster Data 



Table 16. Summary of NPL Target Cluster Data 

Table 17. Summary of INSPEC Cluster Generality Data 

Nc min to nc nc nc to Nc max 

Table 18. Summary of NPL Cluster Generality Data 

N, 

nt, 

ntc/rd 

Nc min to nc nc nc to Nc max 

351 

14.53 

.68 

358 

14.56 

.70 

382 

14.88 

.71 

352 

14.53 

.68 

360 

14.57 

.70 

382 

15.26 

.50 

N, 

cg 

cg/tg 

393 

14.84 

.71 

369 

14.66 

.70 

351 

14.84 

.49 

354 

14.56 

.70 

393 

15.43 

.5 1 

352 

14.84 

.49 

356 

14.56 

.70 

403 

11.87 

.71 

358 

14.88 

.49 

112 

11.92 

.72 

403 

15.55 

.5 1 

354 

14.85 

.49 

360 

14.90 

.49 

112 

I5 64 

5 l 

356 

14.86 

.49 

369 

15.04 

.49 



7 Conclusions and Suggestion for Future Research 

The Pearson Rank Correlation Coefficient test conducted on the INSPEC indexing 

vocabulary supports the theory that a moderately strong relationship exists between an 

indexing term's term generality and its term discrimination value. Results suggest that as 

term generality increases, term discrimination value decreases. Since this finding is 

somewhat contradictory to previous works [14], further investigation is warranted. It 

would be of specific interest to test the degree of this relationship independently for each 

of the three categories of indexing terms: those with high, low, and nearly zero TDV. 

It has been shown that the structure of a clustered document database can be predictably 

controlled through careful selection of the indexing vocabulary. The process of selecting 

indexing terms based upon their individual term discrimination values (tunable indexing) 

allows the number of clusters to be varied from a minimum value to a maximum value. 

The minimum number of clusters exists when the D matrix is defined by the indexing terms 

having the lowest term discrimination values. As anticipated, the associated information 

retrieval performance, measured in terms of precision, recall, and e-measure, is the poorest 

of all observed cluster structures. The number of documents which must be searched in 

order to achieve a given level of precisiodrecall exceeds that associated with both the 

natural cluster structure, and the cluster structure containing the maximum number of 

clusters. Furthermore, in accessing a constant number of documents, this structure provides 

the lowest values of precision and recall, and the highest e-measure value. 



The maximum number of clusters exists when the D matrix is defined by the indexing 

terms having the highest term discrimination values. Again as expected, this cluster 

structure provides the best information retrieval performance when compared to the other 

structures. In accessing a constant number of documents, this structure yields much 

better values of precision, recall and e-measure, as compared to structures with fewer 

clusters. In order to achieve a given level of precision, recall, or e-measure, the structure 

containing the maximum number of clusters requires substantially fewer clusters to be 

accessed, greatly reducing the number of documents which must be searched. 

To conclusively show that tunable indexing is capable of effecting information retrieval 

performance, it would be worthwhile to dictate the number of clusters created by the C'M 

program independent of the tunable indexing process. In this way, one could determine if 

the variation in information retrieval performance is at least partially attributable to 

simply varying the number of clusters. 

It was hypothesized that the cluster structure yielding the best observed information 

retrieval performance would have the lowest ratio of actual average target clusters to 

either total number of clusters, or average number of relevant documents per query. This, 

however, did not prove to be true. In fact, the highest ratio was associated with the 

cluster structure giving the best information retrieval performance, and the ratio increases 

slightly with increasing number of clusters. It was also believed that the ratio of average 

cluster generality to either total number of clusters, or average term generality would 

reach its minimal value for the cluster structure associated with the best observed 



information retrieval performance. Again, this belief was proven incorrect, the ratio 

increases slightly with increasing number of clusters and achieved its maximum value 

when information retrieval performance peaked. 

All cluster structures were created using only those indexing terms selected during the 

tunable indexing process. However, there was never such a restriction applied to the 

creation of queries or cluster centroids; such a restriction was felt to be too artificial, 

especially for queries. In retrospect, applying such a restriction to the centroids may not 

have compromised the realism of the research and may have produced different results. It 

would be worthwhile to investigate this. 



Appendix 1: Sample D matrix and Example Similarity Calculation 

m = number of documents = 5 
n = number of index terms = 6 

depth of indexing for document 1 = Xd l = 3 (xd2 = 3, xd3 = 3. Xd4 = 5 ,  Xd j = 2) 
average depth of indexing = xd = 3.2 
term generality for term 1 = tgI = 3 (tg2 = 3, tg3 = 2, tg4 = 3, tgj = 3, tg6 = 2) 
average term generality = t, = 2.7 



Appendix 2: Example C matrix 

For the generation of the example C matrix the following document description, D, 
matrix will be used. 

From the D-matrix we see, that rn = 5 and n = 6. 
To obtain the C-matrix we use the following formula: 

where ai and Pk are the reciprocals of the it" row sum and the kt" column sum, 
respectively. 

Accordingly, C51 is determined as follows: 



The resulting C-matrix follows: 

To generate the cluster structure we proceed as follows: 

Recall that (the coupling coefficient for document i) = cii from the C matrix. 
Therefore, 6, = .362, 62 = .375, 63 = .444, 6, = .438, and 65 = 362. 
Also recall that yi (the decoupling coefficient for document i) = 1 - 6i. 
Therefore, y l  = .638, y2 = .625, y3 = .556, y4 = .562, and y5 = .638. 

To select cluster seeds, we must determine the cluster seed powers, Pi, for all 
documents: 

Therefore, PI = .693, P2 = .703, Pj = -74 1, P4 = .985, and P, = .693. 

m 
Since it can be shown that n, = 6 x m (6 = C tjilm), n, = .3962 x 5 = 1.98 1 z 2. 

i =  1 

So we must have 2 clusters and of course 2 cluster seeds. The documents having the 2 
highest seed powers become the cluster seeds, d4 and d3. 

To cluster the remaining 3 documents we refer back to the C matrix. Considering d l ,  it is 
seen that c,, > c13 (dl is covered better by d4 than by d,), so d, is clustered with d,. Using 
this procedure the following clusters are obtained (seeds are indicated in bold). 

Cluster 1 = (d3, d2} Cluster 2 = (d4, d l ,  d,) 



Appendix 3: Term Weighting Components 

Term Frequency Components Meaning 
b I .O binary weight equal to I .O for terms present in vector 

(term frequency is ignored) 

t tf raw term frequency 

n .5 + .5(tf!max tA augmented normalized term frequency 

Collection Frequency Components Meaning 
x 1 .O no change in weight 

f log Nln inverse collection frequency, where N = number of 
documents in collection and n = number of documents 
to which a term is assigned. 

p log(N - nln) probabilistic inverse collection frequency factor 

Normalization Components Meaning 
x 1 .O no normalization 

c 11 (CVecmr ~ i ~ > ' ' ~  cosine normalization, where wi is the weight of the ith 
term 

More explanation for the tern weight components is provided in [l 11. 
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