
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Experimental Evaluation of the

Cleanroom Software Development

Method

Naagesh Oruganti
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/56



 

 
 

DEPARTMENT OF COMPUTER SCIENCE  
& SYSTEMS ANALYSIS  

 
 

TECHNICAL REPORT:  MU-SEAS-CSA-1992-003 
 
 

Experimental Evaluation of the Cleanroom  
Software Development Method    

Naagesh Oruganti  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928 
 

 



Experimental Evaluation 

of the 

Cleanroom Software Development Method 

Naagesh Oruganti 
Systems Analysis Department 

Miami University 
Oxford, Ohio 45056 

Working Paper #92-003 March 1992 



Experimental Evaluation of the Cleanroom Software Development 
Method 

FINAL PROJECT REPORT 

Pesented in Partial Fulfillment of the Requirements 
for the Degree of 

Master of Systems Analysis 
in the 

Graduate School of Miami University 

Naagesh Oruganti 

Miami University, Spring 1992 

Advisor: 

Dr. James D. Kiper, Department of Systems Analysis 

Reading Committee: 

Dr. Alton F. Sanders, Department of Systems Analysis 

Dr. John Bailer, Department of Mathematics and Statistics 



Orugantl Project Report 

Con tents 

Abstract . . . i 

Acknowledgements ... ii 

I .  Introduction . . . 3 

2. The Cleanroom method .., 4 

3. The framework of goals ... 14 

4. The experiment , . .  16 

6.  Data Analysis and Interpretation . . .  2 1 

7,  Analysis of the results , , 38 

8. Conclusions . , . 42 

References . . . 43 

Detailed summaries of various attributes of the 
products grouped by team ... Appendix I 

Aspects considered for characterizing 
User interface . . . Appendix I1 

Test Cases . . . Appendix 111 

Operational Profile . . . Appendix IV 

Statistical Test Results . Appendix V 



Orugantl Project Report 

1. introduction: 

The field of software engineering is evolving as various new techniques, languages, 

paradigms, process models, methodologies, metrics etc., are constantly being developed, 

used and improved. In the past, several empirical studies were conducted to experiment 

with various new ideas in software engineering in order to help us better understand, evalu- 

ate, predict, control and improve these ideas. Basiii et al. review several of these studies 

and present a general framework for analyzing these experiments[2.5]. They emphasize 

the need of such experiments for advancement of software engineering discipline. They 

recommend that the experimental planning process should include a series of experiments 

for exploration, verification, and application of new ideas. They also implied that the results 

of empirical experiments in software engineering should be verified by a series of other 

related experiments. 

Cleanroom methodology for software development is a relatively new concept. Cur- 

rently researchers are attempting to study the benefits and implications of using the Clean- 

room methodology. One such attempt was made at the University of Maryland (UM) a 

few years ago which empirically characterized various aspects of Cleanroom methodolo- 

gyj211. The fact that this study was empirical motivates the need for verifying its results. 

Also, the fact that the methodology is new motivates the need for further experimentation. 

Therefore, this experiment has been replicated recently at Miami University (MU). The 

goal of this project is to analyze the data collected in this experiment to verify the results 

of the previous study. 



Oruganti Project Report 

2. The Cleanroom method 

The intent of Cleanroom software development approach is to produce highly reli- 

able software by integrating formal methods for specification and design, non-execution- 

based program development and statistically based independent testing. The Cleanroom 

approach imposes discipline on software development so that system correctness, with certi- 

fiable reliability, results from a coherent, readable design rather than from a reliance on 

execution-based testing [21]. 

Cieanroom software engineering is a team approach to incremental development 

of software under statistical quality control. The "Cleanroom" name comes from the semi- 

conductor industry, where a physical cleanroom is maintained in an attempt to prevent 

introduction of defects during hardware fabrication[2]. The Cleanroom method focuses 

on error prevention during the development life cycle rather than accepting software errors 

as inevitable and focusing on error detection. 

The following sub-sections will briefly describe the salient aspects of the Cleanroom 

method. In each section, we describe an idea or technique, mention certain popular, practi- 

cal ways to incorporate these into the Cleanroom process, and finally, analyze and report 

the impact of each of these on the product, people and process. 

2.1. Specification in the Cleanroom and use of Formal &/Lethods 

In the Cleanroom approach, software design and all subsequent validation of imple- 

mentation are completely based on a requirements specification document ('141, Chapter 

1). Therefore, Cleanroom emphasizes the generation of correct, unambiguous, consistent 

and complete requirements specification leading to a controlled approach to stabilizing re- 

quirements in the early phases of software development life cycle. This in turn facilitates 

a more complete, coherent and verifyable design, overall improvement of product quality 

and substantial savings in maintenance costs. It also helps management in establishing 

and discerning accountability between specifiers and developers. 

In addition to the requirements specification document, an expected-usage or 'op- 

erational' profile (an empirical frequency distribution of inputs to the system during its 

normal operation) and a detailed software construction plan are generated during Clean- 

room's specification phase. As described later, these together support statistical testing 

of incremental releases including regression testing of previous releases in a Cleanroom 

development life cycle. 



Orugantl Project Report 

Typically, requirements are specified in natural language. But, usage of a formal 

specification mechanism to facilitate accurate, unambiguous specifications is of critical im- 

portance in the Cleanroom method to verify the correctness of design and implementation. 

Dyer mentions box structuring techniques, formal specification languages (such as Z, VDM, 

etc.,) and problem specific grammars as acceptable formal methods ([14], Chapters 1,  4). 

Carmen et.al., have successfully used Box Structure Specification and Design tech- 

niques to perform step-wise refinement of specifications and design simultaneously for 

an Automated Production Control Documentation System[2]. SeIby et.al, suggested struc- 

tured specifications and state machine models for generating specifications[21]. 

Cobb and Mills distinguish between external specification and internal specifica- 

tion [ I  71. The external specification is a comprehensive user's reference manual (it is 

not a tutorial introduction to the product). It includes information about system use (com- 

mands, menus, all possible stimuli and corresponding response, events e t ~ . , )  system envi- 

ronment (hardware and software platforms and people), application environment, perform- 

ance guidelines etc. The internal specification is more mathematical. The internal 

specification defines the responses in terms of 'stimuli histories' to make the specification 

implementation-independent. The authors mention that external specification should be 

written in natural language but they seemed to suggest formal methods for internal specifi- 

cation. 

2.2. Design in the Cleanroom method 

Dyer recommends a formal design method based on structured programming theory 

to be used in the Cleanroom[lSj. This method involves a systematic and step-wise refine- 

ment of the software requirements to construct software design whose correctness can be 

assessed and confirmed at each step. Linger and Mills report using a function-theoretic 

approach as a formal design methodology for developing COBOL/SF[lG]. 

Cobb and Mills describe the design process and provide an algorithm for using box- 

structured techniques in [17]. Carmen et.al., have demonstrated the use of box-structured 

techniques for design in a Cleanroom scenario[2]. Their step-wise refinement approach 

for design can be briefly summarized as follows: Each product increment is designed in 

top-down fashion to represent system behavior in a hierarchy of black boxes, state boxes 

and clear boxes. The implementation-independent black-box view defines the responses 

in terms of stimuli histories. The data-driven state-box view begins to define implementa- 



Orugantl Project Report 

tion details by elaborating the black box functionality in terms of internal data structures. 

The process-driven clear-box is the procedural design and may involve decomposition of 

the function into new lower level black boxes. 

As such, although new terminology is introduced, this approach itself does not seem 

to be much different from the traditional top-down design scheme. But the Cleanroon~ 

approach deviates from top-down approach in that it advocates rigorous functional correct- 

ness verification of each of the views at all levels against the requirements specification. 

This may involve construction of correctness proofs[l3]. The Cleanroom method derives 

its unique advantages not only from the fact that the functional verification is facilitated 

by formal requirements specification, but also the design itself is a systematic, natural re- 

finement of the specification. 

Also, verification-based inspections provide independent confirmation of the design 

correctness[l2]. Occasionally, this process may also help in validating requirements of 

the system to make them more accurate, complete and consistent, augmenting the rigor 

of formal specification. 

It is believed, based on the evidence from past experience, that designs developed 

with the Cleanroom method exhibit characteristics such as logical simplicity (attributable 

to the verification during design refinement) and better incorporation of data abstraction 

and encapsulation([l4], Section 2.3.2). 

2.3. Development and implementation with formal verification and elimination of ex- 
ecution-based unit-level testing 

In the Cleanroom methodology, software product increments are implemented by 

rigorous stepwise refinement of design units (i.e., the 'clear boxes', in case of box-struc- 

tured paradigm) into executable code. Then, the developers construct formal functional 

verification arguments(71 and informal correctness proofs[lS 1 to verify that the code is 

equivalent to the design and hence that it conforms to requirements specification. These 

correctness proofs (with mathematicalllogical reasoning but not esoteric mathematical nota- 

tion) and functional verification arguments are thoroughly reviewed along with the code 

itself in independent code-inspections[l2. In addition to formal verification and code-in- 

spections, the Cleanroom method employs code-reading by step-\vise abstraction11 51 and 

group walkthroughs[6] to assert the correctness of the implementation. These techniques, 

collectively referred to as "off-line software review techniques", unlike their counterparts 



Orugantl Project Report 

in execution-based testing, simultaneously perform the activities of defect detection and 

isolation. 

It perhaps sounds very radical and impractical that the Cleanroom developers are 

prohibited from performing any testing at all, including unit-level and sub-system level 

testing. But, it is evident from the past experience with Cieanroom method that formal 

verification and structured code reviews can effectively replace unit-level testing and also 

that the techniques applied in the Cleanroom resulted in software with significantly higher 

quality, and increased the productivity of the people using the method (1171, [I41 - Section 

2.3). Also, from the empirical evaluations reported in the literature, code reading by step- 

wise abstraction is at least as cost effective in detecting faults as execution-based methods 

[17J,[24j,[18],[101. 

The following observation made by Mills, Dyer and Linger, also brings up an interest- 

ing argument for increased use of formal mathematical verification instead of debugging: 

"we find that human verification is surprisingly synergistic with statistical testing -- that 

mathematical fallibility is very different from debugging fallibility and that errors of mathe- 

matical fallibility are much easier to discover in statistical testing than are errors of debug- 

ging fallibility" [8]. 

In the Cleanroom method, all software is placed under formal configuration control 

prior to its first execution. This, together with elimination of unit-level testing has an imme- 

diate psychological effect on the developers, which manifests as a significant improvement 

in their productivity and in the quality of their software. Knowledge that all execution errors 

will be given public scrutiny imposes discipline on software development and leads to more 

conservative, careful and confident designs which exactly match the requirements. 

Unit verification by debugging (execution-based) works fine for small programs but 

it does not scale up to large, integrated systems because it often compromises the design's 

integrity by producing local correctness and global incorrectnessl5j. Cobb and Mills theo- 

rize the reasons for the cost-effectiveness of formal non-execution based unit verification 

as follows: design errors are caught sooner and as a result are less costly to fix; the expenses 

of finding the subtle, cantankerous failures introduced by debugging and the expenses of 

building programs to permit unit testing (drivers and stubs) are eliminated; it takes less 

time[l7]. Note that, if such tool support is available, the Cleanroom developers may make 

use of a syntax checking program. 



Orugantl Project Report 

2.4. The development process, planning, organization and executable system func- 
tional increments 

The "Waterfall" method is frequently used to model software development process. 

In this model, the system development life cycle consists of a sequence of specification, 

design, implementation (includes unit and sub-system level testing), testing (integration 

and acceptance testing), installation and maintenance phases. For large software systems, 

incremental development of multiple releases with each release encompassing more func- 

tionality of the system is preferred. If the application is not well-defined and the require- 

ments are still being developed or evolved, a spiral model of life cycle is adopted in which 

software design, implementation and test steps are iterated between releases. 

As described in figure 1, the Cleanroom method adopts an incremental development 

model in which the information about mean-time to failure (MTTF) and other product 

quality aspects (obtained from independent test and diagnosis) of each of the executable 

product increments is fedback into the process for further improvement. Incremental devel- 

opment supports the top-down development strategy and defines a stepwise approach to 

constructing software. 

In the Cleanroom approach, a specification team, a development team and a certifi- 

cation team together can help interleave the phases of specification, design, development 

and testing repetitively for the product increments. The specification team prepares and 

maintains the specification and specializes it for each development increment. The develop- 

ment team designs and implements the software. The certification team compiles, tests 

and derives MTTF statistics and other diagnostic feedback and certifies the software's cor- 

rectness. 

Initially, a construction plan consisting of a functional decomposition of the system 

into user-executable increments and a detailed delivery schedule comprising specific mile- 

stones is devised. The content of the increments and the timing of their release are carefully 

planned to deliver significant increases in software functionality with each increment, so 

that enough structure is provided for an orderly evolution of the system. As the past 

experience with Cleanroom confirms, this organization facilitates intellectual control over 

the process and monitoring of statistical quality of the product. 



Oruganti Project Report 

Figure 1. Cleanroom System Development Life Cycle 
(Source:  1141 - Chapter 1 ,  modified) 

Typically, a small-to medium sized Cleanroom product is divided into less than 6 

product increments. Each increment is seldom more than 10,000 lines of code. In case 

of large systems, the number of increments is still kept low, to a dozen or so, but the incre- 

ment size and the integration time period is increased. 

Software Specification I 
4 

Construction Plan 

INCREMENT I - - - - - lNCREhlENT N 

2.5. Statistically based, independent testing and reliability prediction 

Software DesigniVerification 

Generally, software product testing involves two components: structural testing and 

functional testing. Structural testing is performed to ensure that the software correctly 

implements its design (which is primarily the responsibility of the developer). Functional 

testing is performed to validate that the software satisfies the specified requirements. As 

mentioned previously, it was demonstrated that the off-line review techniques used in con- 

junction with a formal design method in the Cleanroom approach satisfy all the goals de- 

fined for structural testing. The Cleanroom approach complements this by independent, 

statistical functional testing based on "operational or usage profile" to validate system per- 

formance against requirements specification. 

- - - Software DesignlVerilication 

The aim of statistical testing in the Cleanroom approach is to validate the require- 

ments, generate diagnostics and derive MTTF data to enable the prediction of reliability 

of the system. An independent certification team of testers simulate the operational envi- 

ronment of the system with random testing from a perspective of reliability assessment 

rather than a perspective of error detection and location. The operational environment 

of the system is simulated by selecting test cases based on the "operational or usage pro- 

- % 
Software Implementation --- Software Implementation I 

?@+ah x 
Configuration Controlled Software - - - Configuration Controlled Soltware 

Software MTTF for 
@Q%. 

Diagnosis and Correction Independent Software Test 
I 



Oruganti Project Report 

file", which is the frequency distribution of inputs to the system in conjunction with require- 

ments specification[4]. The operational profile itself is obtained by user surveys and/or 

analysis of previous usage of similar systems. 

In Cleanroom methodology, emphasis is placed on finding and eliminating software 

failures of execution, rather than software errors or faults. Musa et.al, define the terms 

error, fault and failure[9] as follows: 

Failure - is a departure of the external results of program operation from program requirements 
on a run. Note that the definition of failure is tied with execution of the program. 

Fault - is defined as a defective, missing, or extra instruction or set of celated instructions that 
is the cause of one or more actual or potential failure types. Note that by definition there cannot 
be multiple faults causing a failure. The entire set of defective instructions that is causing the 
failure is considered to be the fault. 

Error - an error is a cause of one or more faults. Errors generally belong to one of the following 
four categories: communication, knowledge, incomplete analysis, or transcription. 

It can be easily seen that the execution failures occur with varying frequency, depend- 

ing on the usage profile. Coverage testing, which covers every path though the program, 

is as likely to find a rare execution failure as it is to find a frequent execution failure. 

But, Cleanroom's statistical testing, based on the usage profile, has a better chance to find 

more frequent failures. Since the goal is to predict a meaningful operational quality metric 

of the system such as MTTF, statistical, functional testing is proved to be more effective 

than structural coverage testing. This claim is supported by Cobb and Mills in their asser- 

tion that statistical usage testing is 20 times more cost-eflective in jinding execlition faillires thun 

coverage testing [ 1 71. 

Statistical testing in the Cleanroom approach relies on random sampling from a com- 

plete domain of possible test data which is superior to the arbitrary partitioning of data 

by testers. Also, the test material incorporates realism by considering probability distribu- 

tions that describe the expected operating scenarios and hence make the reliability predic- 

tions derived from the results of this testing more meaningful and interpretable. 

The particular statistical testing strategy recommended for use in the Cleanroom 

engineering is called statistical regression testing. In this technique, testing at each release 

considers (i.e. test cases are selected to test) all the previous releases, while concentrating 

on functions most recently delivered and maintaining the overall composite distribution 

of inputs. The MTTF measurements are made at each release of a software increment 

and product's projected reliability is predicted using reliability growth models and compared 

against a preset target to decide whether changes are required in software development 



Oruganti Project Report 

to improve MTTF. The magnitude of discrepancy between the predicted and target reliabil- 

ity values dictates the nature of change warranted. For example, if the difference crosses 

a certain threshold, the increment will be redesigned rather than fixing the implementation. 

Musa presents a comprehensive discussion of reliability assessment and prediction by intro- 

ducing various reliability growth models[9]. Other references to statistical models for reli- 

ability evaluations can be obtained from both [9] and [21]. 

In summary, the statistical testing process involves defining an operational profile, 

i.e., estimating the frequencies of usage of component functions and their groupings, ran- 

domly selecting or generating test data and test cases based on the operational profile, 

devising test schedules and an integrated test plan, conducting random testing on individual 

product increments, observing MTTF (and its dynamics) and predicting the projected reli- 

ability of the system. 

It is conceivable that the usage profile may pronounce a very low frequency of usage 

of certain very important (perhaps privileged) functions of the system whose correct opera- 

tion is very vital for satisfactory performance of the system, or whose failure might be 

catastrophic. In order to accommodate this fact of life, in addition to statistical functional 

testing, the independent testers in the Cleanroom also test these important functions of 

the system with a limited number of test cases to ensure correct system operation. 

2.6. Statistical Quality Control of Cleanroom Software, Management Perspective 

Although software behavior is deterministic, statistics can be used to make infer- 

ences about software quality because software use is stochastic. Cleanroom software engi- 

neering, when all the components of Cleanroom approach are applied to a project, is a 

practical process placing software development under statistical quality control. 

For statistical quality control of software development, some basis for monitoring 

the software quality level must be defined. Unlike manufacturing, the basis can not be 

found in the large numbers of similar manufactured products, since software is an intangi- 

ble product. Nor can it be found in the physical aging of the software statements, since 

the execution of these software statements is deterministic and always gives the same result 

for the same input. The basis must be found in the testing (which can be seen as trial 

usage) of the software product, with a perspective of obtaining information about the quality 

attributes of product and process. In hardware, physical dimensions and the statistical 

tolerances on physical parts are additive components and can be combined for considering 



Orugantl Project Report 

the statistical quality of a complete product. This is not possible in case of a software 

product because of the deep and complex logical interactions between software parts. 

Testing in the Cleanroom process has a statistical rather than selective basis. Statis- 

tical quality control of software in the Cleanroom is similar to modern manufacturing pro- 

cess control systems, in which, process oiitputs are sampled, process and product quality 

attributes are measured, quality trends are diagnosed and corrections to both product (such 

as fixing implementation or re-designing or even improving specification) and process 

(such as increased inspections and configuration control) are recommended. 

As indicated previously, the Cleanroom process permits a sharper structuring of 

development work between specification, design and testing with clearer accountabilities 

for each part of the process. The MTTF estimations, based on user representative testing 

(obtained from the operational profile) provide both the development managers and users 

with a useful and readily interpretable product reliability and quality measure. 

The Cleanroom life cycle of incremental product releases supports software testing 

and hence allows continuous assessment of product quality (based on predicted reliability) 

throughout the product development rather than only when it is completed. This is very 

helpful for management in gaining intellectual control over the development process and 

monitoring it for improvement in process and product quality attributes to achieve project 

goals within the resource constraint framework. '- 

The Cleanroom process requires stable specifications as its basis. Because specifi- 

cations are often not fully known or verified during initial development, it might appear 

at first glance that the Cleanroom approach may not be effective in developing new systems. 

But, in fact, the discipline imposed by the Cleanroom process is most useful in forcing 

specification deficiencies into the open very early during development and giving manage- 

ment control of the specification process[8]. 

2.7. Introduction of Cleanroom into software development life cycle (SDLC) and a 
development environment 

The Cleanroom approach is not just a development technique, it is a comprehensive 

methodology in that it covers the complete system development life cycle. It is organized 

as a set of component techniques comprising software specification, software development, 

software correctness verification, independent software product testing, software reliability 

measurement, and statistical process control. These techniques are briefly described in 



Oruganti Project Report 

the previous sections. Past experience indicates that Cleanroom component techniques 

can also be applied individually or in combinations for achieving significant development 

benefits. This is because each component addresses a specific aspect of the software 

development process, makes a separate contribution to development and, conceivably, has 

a unique set of conditions to be established before it could be introduced into the process. 

If possible, the total Cleanroom process (including all the component techniques) 

should be used for software development to realize its full potential for enhancing product 

quality and process productivity. However, transitioning to a totally different development 

process is not always practical tvithin an ongoing software development environment, where 

an incremental introduction of the Cleanroom components has proven to be a more effective 

strategy for technology transfer. Dyer discusses various possible strategies for technology 

transfer and their potential benefits and prerequisites[l4]. 

2.8. Tool Use in the Cleanroom 

Various tools can be used during system development to support the process of speci- 

fication, design, implementation and testing. Cleanroom developers may make use of 

tools such as data flow analyzers, static analyzers, syntax-checkers, type checkers, formal 

verification checkers, concurrency analyzers, design and modeling aides. A Cleanroom test 

case generator, a verification-based syntax analyzer and a reliability analysis package are 

among the tools developed at IBM for providing tool support for Cleanroom software engi- 

neering. Also, tools to assist in defining operational profile, planning and conducting statis- 

tical testing (especially in obtaining MTTF data) would be very useful. 

2.9. Summary of impacts of Cleanroom 

The Cleanroom software engineering has been very effectively applied to various 

software projects in the past at B M  and NASA and others in the industry. The results 

include a significant overall improvement in product and process quality, development pro- 

ductivity and a better intellectual control over the process. The product quality is measured 

in terms of defect rate and reliability. The impact on development process is gauged based 

on the resources consumed including development time. The impact on development peo- 

ple is assessed by their productivity improvement and overall intellectual satisfaction 

achieved. 



Oruganti Project Report 

3. The framework of goals of the study 

The goal of this project was to analyze the data collected in the experiment conducted 

at Miami to verify the results or conclusions of the previous study done at the University 

of Maryland. A broad classification of the goals of the project are as follows: 

1 Characterize the effect of Cleanroom on the . This involves: 

A. For intermediate and novice programmers building a small system, what were 
the operational properties of the product? 

A. 1 .Did the product meet the system requirements? 

A.2.How did the operational testing results compare with those of control 
groups? 

B. What were the static properties of the product? 

B.1.Were the size properties of the product any different from what would be 
observed in a traditional developn~ent? 

B.2.Were the readability properties of the product any different? 

B. 3. Was the control complexity any different? 

B.4.Was the data usage any different? 

B.5.Was the implementation language used differently? 

a .  Comparative analysis of the static properties of the product, and 
b. Comparative analysis of the degree of conformity of the product 

to the system requirements, 

C. What contribution did programmer background have on the final product 
quality? 

2 Characterize the effect of Cleanroom on the software development Drocess. 

A. For intermediate and novice programmers building a small system, what tech- 
niques were used to prepare the developing system for testing submissions? 

B. What role did the computer play in development? 

C. Did the developers meet their delivery schedule? 

3 Characterize the effect of Cleanroom on the developers. 

A. When intermediate and novice programmers built a small system, did the 
developer miss the satisfaction of executing their own programs? If so, did 
missing of program execution have any relationship to programmer back- 
ground and did it have any effect on the quality aspects of the delivered prod- 
uct? 

B. How was the design and coding style of the developers affected by not being 
able to test and debug? 

C. Would the developers use Cleanroom again? 



Oruganti Project Report 

Obviously, these goals warrant a comparative study of the above mentioned proper- 

ties of Cleanroom products with respect to those of the control groups for the experiment 

conducted at Miami and then another comparative study of these results with the results 

of the University of Maryland's study. 



Oruganti Project Repon 

4. The experiment 

This section introduces all the aspects of the experimental set up at Miami, outlines 

the discrepancies between the experiments of UM and MU, describes the data that were 

already collected by Dr. Kiper before beginning this master's project and comments on 

the Cleanroom techniques incorporated in both the experiments. 

CLEANROOM CROUP 

Attribute Mean Std Dev Median Minimum Maximum MW 
significance 

Average number o f  
semesters completed 6.33 0.94 7.00 5.00 7.00 0.53 
Average number of 'major' 
computer pro'jects participated 1.29 0.86 1.00 0.33 2.66 0.32 
Average 'professional' experience 
of group members (in months) 3.56 0.57 3.33 3.00 4.35 0.33 
Average overall <;PA 
of group members 3.34 0.28 3.30 2.99 3.70 0.32 
Average G l A  of members 
in maior (Systems Analysis) 3.32 0.41 3.50 2.70 3.70 0.69 

CONTROL GROUP 

Attribute Mean Std Dev Median Minimum Maximum MW 
significance 

Average number of 
semesters completed 6.13 0.84 6.50 5.00 7.00 0.53 
Average number of 'major' 
computer pro.jects participated 1.66 0.33 1.66 1.33 2.00 0.32 
Average 'professional' experience 
of group members (in months) 4.86 2.03 5.33 2.00 7 . 0  0.33 
Average overall GPA 
of group members 3.10 0.37 3.12 2.70 3.62 0.32 
Average GPA of group members 
in major (Systems Analysis) 3.14 0.38 3.02 2.80 3.75 0.69 

Table 1. Summary of the pre-development experience survey by group 

4.1. The experiment conducted at RIianii 

In order to describe the experimental set up at Miami, this section discusses various 

characteristics of the subjects of the experiment, briefly describes the product (Electronic 

Mail-User System) developed by the subjects and the hardware environment used for this 



Orugantl Project Report 

to as the control group teams) used traditional development methodologies. The project 

was developed incrementally with preset milestones common for both the groups. There- 

fore, as was the case with UM's experiment, both Cleanroom and non-Cleanroom teams 

had the benefits of independent, incremental, functional testing. The two groups of teams 

were not statistically different in terms of professional experience, academic performance, 

or implementation language experience. 

Just as in UM's experiment, the Cleanroom developers entered their source code 

on-line, used only a syntax checker while the non-Cleanroom teams used a complete VAX 

Ada compiler and were able to generate and execute code. The Cleanroom developers 

were able to perform automatic type checking across modules and they used the off-line 

review techniques of code reading (by step-wise abstraction), group walkthroughs and in- 

spections. The non-Cleanroom teams were able to execute and debug their programs. 

They employed the techniques of modular design, top-down development, functional test- 

ing and informal design reviews. 

4.2. Differedces between the experiments at UM and MU 

The intent of this study was to replicate the empirical study of UM and therefore, 

MU'S experiment was modeled after that of UM and a good deal of effort was put into 

minimizing any qualitative differences. 

1. The average professional experience of Uhl team members is significantly higher than 
that of MU team members. 

2 .  Several Cleanroom developers of the University of Maryland have already utilized 
some of the ideas in the Cleanroom, especially off-line review techniques, whereas 
none of the Cleanroom developers at Mianli had any such exposure. 

3.  In MU's experiment, both the Cleanroom and non-Cleanroom teams developed their 
systems using relatively new object-oriented principles and an object-based language 
Ada. Their peers at UM used structured design and coding techniques. 

4 .  UM teams used the programming language Simple-T; MU teams used Ada. 
5 .  At UM, the Cleanroom group teams and control group teams belonged to different 

courses to combat Hawthorne effect (described in Section 7) ,  whereas, in MU's 
experiment, both Cleanroom and non-Cleanroom teams belonged to the same course. 

6. In MU'S experiment, although independent functional tests were performed on 
various product increments during development statistical testing was not. Statistical 
testing was performed on various product increments during development at UbI. 

7. There were no graduate students involved in MU'S experiment. 
8 .  In UM's experiment there are two teams with less than 3 members. In MU'S experi- 

ment all the teams had 3 members in them. 
9. The number of Cleanroom teams in UM's experiment was 10 and in MU's it is 5 .  

The number of control group teams is the same though. 

Table 2. Differences between the experiments at URll and MU 

18 



Orugantl Project Report 

purpose and finally discusses the distinctions between the Cleanroom teams and non-Clean- 

room teams. 

4.1.1. Subjects 

Subjects of the experiment consisted of 30 students (Seniors: 21, Juniors: 8, Sopho- 

mores: 1) of the course titled, "Object-Oriented Programming with Ada" taught by Dr. 

James D. Kiper in Spring 1988. Initially this course briefly discussed various principles 

and goals of software engineering and approaches to software development, introduced 

the Ada programming language and object oriented design and finally discussed more ad- 

vanced features of Ada which facilitate object-oriented programming. The profile of the 

members of all the groups is summarized Table 1 and the summary of profile of all the 

teams is included in Appendix I . 

The course also involved a group project which imparted experience with developing 

a relatively large system in teams using object-oriented programming principles. For the 

group project, individuals taking the course were grouped into three-person teams. An 
L. 

attempt was made to compose teams of uniform profile based on their professional experi- 

ence, academic performance. and implementation language experience. If co-op experi- 

ence is considered professional, the average professional experience of the participants 

of the course was 4.86 months. Most of the students did not have any significant prior 

experience with Ada programming language. The subjects of the University of Maryland 

experiment also did not have any significant prior experience with the programming lan- 

guage Simple-T, in which their systems were developed. 

4.1.2. Project Developed 

The project involved developing a software package for Electronic Mail-User Sys- 

tem (EMS). The requirements specification document for the system was obtained from 

UM and was slightly modified by Dr-Kiper, (without affecting the comparability of results 

of both the studies). The systems were developed in VAX Ada in VMS Environment. The 

systems were expected to be completed in 6 weeks and to be about 1500 lines of Ada code. 

4.1.3. Cleanroom Development Approach versus Traditional Approach 

Ten 3-person teams developed versions of the same EMS software system. All 

the teams were required to use Ada as the development language. Five of the ten teams 

developed their systems using the Cleanroom approach, and the other five teams (referred 



Orugantl Project Report 

Table 2 accounts for all the perceived differences in the experimental set up of UM 

and MU and helps in identifying some of the intricacies of replicating experiments in soft- 

ware engineering. For example, the number of teams and the professional experience 

of the participants are among the constraints which are, to a large extent, beyond the scope 

of control that could be exercised in an academic environment. Therefore, it would be 

useful to analyze various parameters which could influence the replicability and their effect 

on the validity of comparative analysis of results prior to replicating an empirical experi- 

ment in software engineering. 

4.3. The Cleanroom component techniques incorporated in the experiments 

Both groups followed the incremental product development strategy. The Cleanroom 

groups in the experiments both at UM and at MU, did not used the techniques of formal 

specification and formal design. Both used code reviews but neither used vigorous formal 

or informal proofs of correctness. During implementation both used only off-line review 

techniques. In both the experiments, an operational profile was defined by conducting a 

survey of seasoned mail users (11 in UM's experiment and 10 in MU'S experiment). Inci- 

dentally, although the participants of these independent surveys are totally different their 

results (i.e., the operational profiles) turned out to be very close to each other. This helps 

us gain more confidence in the truth value of the operational profile. In the experiments 

conducted both at UM and at MU reliability targets were not set and reliability predictions 

were not made at each incremental release. 

4.4. The available data 

The primary task of this project was to analyze data collected from the experiment 

conducted at Miami University. The data collected from the experiment are: a survey of 

experience of all the participant students, a survey of the end-users of the system, execut- 

ables of final system releases and corresponding source files, reports of independent func- 

tional testing, specific grading reports for all the 10 teams, and a post-development attitude 

survey of the individual members of all the teams. 



Oruganti Project Report 

5. The approach 

Statistical testing is an integral component of cleanroom methodology and it facili- 

tates an objective and meaningful characterization of system reliability. Operational system 

properties of the final products of each team are statistically tested using the test data gener- 

ated based on the input probability distribution. Performing statistical testing on the prod- 

ucts developed by both Cleanroom and control group teams yielded two sets of statistics. 

These statistics were analyzed with the help of SAS' by comparing and correlating them 

using non-parametric statistical analysis techniques2. The same process was repeated for 

various static system properties also using an Ada based Metrics Analysis Tool called Ada- 

MATID 3.  

Finally, post-development attitude survey will be analyzed to characterize the effect 

of Cleanroom on the developers. In order to eliminate any bias during some subjective 

evaluations of operating or static properties of the systems, the knocvledge about which 

of the teams belong to Cleanroom and which do not was not disclosed to the independent 

tester until the analysis phase. These results are then compared and correlated with those 

of the previous study at UM. 

1 .  SAS is a registered trademark of SAS Institute. 

2. Using non-parametric or rank procedures for statistical analysis is appropriate because we 
would be dealing with rank data (i.e., relative positions of various ordered data values) rather 
than interval data (which is based directly on the metric itself). Especially, the non-parametric 
tests are very appropriate if one is dealing with countinglpercentage kind of data. Also, nonpa- 
rametric tests apply even when the choice of a particular numerical scale of measurement is ar- 
bitrary, as long as the measurement process is consistent for all the observations. This is be- 
cause they depend only on order relationships among the observations. Consequently, much 
less has to be assumed about the form of the underlying populations or about the metrics, The 
statistical analysis involves: 

i. Comparing various characteristic attributes of the two groups (Cleanroom group vs. 
control group). Mann-Whitney significance or Wilcoxon or U test is used for this 
purpose. The U test performed by using SAS gives various statistics. Among these, 
T-Test approx. Significance (commonly referred to as 'P') is the most important. If P for 
a particular attribute is less than a certain threshold (usually less than 0.1), then it is 
inferred that the difference (in the values of this attribute) between the two groups is not 
statistically significant. The value of the MW statistic 'Z '  itself doesn't have much 
semantic importance, but its sign determines whether the difference is positive or 
negative. 

ii, Identifying association or correlation between performance attributes and various other 
attributes within the Cleanroom group. Spearman Correlation strategy (which is general 
enough to match any kind of distribution, both linear and highly non-linear) was used for 
this purpose. Spearman coefficient is marked on a scale of 0 to 1, along with a 
significance level attached to it. A score of 1.0 for the coefficient with signif. = 0 is the 
best possible correlation (e.g. correlation of a variable with itself) 

3. AdaMAT/D is a registered trademark of the Dynamics Research Corporation. 



Orugantl Project Report 

6. Data analysis and interpretation 

In this section we describe the results of our experiment within the framework of 

goals outlined above. All the aspects of the experiment analyzed at the UM are analyzed 

with the data collected in MU'S experiment. Each of the following sections begins with 

an outline of the approach (i.e., what exactly was performed), followed by a presentation 

of results, and finally a comparative analysis of Cleanroom and non-Cleanroom products. 

Each section is concluded by contrasting these results, conclusions, implications and infer- 

ences with those of University of Maryland. 

6.1. Characterization of the effect on the developed product 

The effect of Cleanroom component techniques employed in this experiment on the 

developed product is assessed by a comparative analysis of the implementation complete- 

ness characteristics, operational testing results and static systems properties of the final 

product releases of all the teams. 

6.1.1. Implementation completeness 

In order to characterize implementation completeness, the system functionality was 

divided based on the EMS requirements specification document into a set of logical sub- 

functions. The non-functional requirement that the system must not be case-sensitive is 

specified clearly in the requirements specification document, and hence is considered for 

implementation completeness characterization. 

A set of test cases was created to test each of these logical sub-functions, thus cover- 

ing (note that here, we are talking about functional coverage and not structural coverage) 

the \\;hole functionality of the system. This set of test cases was used to perform functional 

testing of the completed system of each of the teams and the parts of their functionality 

conforming to specifications are recorded to characterize implementation completeness. 

Selby et. al., at the University of Maryland, devised a measure of implementation complete- 

ness as follows: the functional testing was performed with selected test cases; each function 

in an implementation was then assigned a value of tivo if it completely met its requirements, 

a value of one if it partially met them, or zero if it was inoperable. The total for each 

system is calculated and its ratio with the maximum possible points is used to characterize 

the percentage of implementation completeness. 

Selby's work to characterize implementation completeness was repeated in our study 

too. However, there was some amount of subjectivity involved in evaluation of this metric 



Orugantl Project Report 

for the systems, because the word "partially" is not specific and is somewhat ambiguous. 

Furthermore, a particular function may qualify to be partially implemented even if  only 

a very small component of the total function is correctly implemented, thus accrediting 

more value to its completeness than it truly deserves. On the other hand, a function might 

be implemented almost completely but might be missing a small component which disquali- 

fies it from being marked as complete. This results in assigning less credit to the system 

(for completeness) than it rightly deserves. 

In order to avoid these problems in our study, a new metric for implementation com- 

pleteness which is based on the requirements specification document is proposed. Each 

of the requirements (corresponding to the logical sub-functions of the system) specified 

in the requirements specification document is thoroughly analyzed to identify all the "atom- 

ic" components comprised by it. Each of these components is atomic in the sense that 

i t  can either be satisfied or not. If the component is satisfied by the system it is given 

one point; if not it is given a zero. This minimizes any subjectivity and imbalance of scores 

that was involved in computing Selby's metric. A given function may have many atomic 

components in it, and to make this metric comparable to Selby's the total score of points 

from individual components obtained for the function is divided by the maximum possible 

points (i.e. the number of components) and multiplied by 2. 

The average percentage implementation completeness of Cleanroom projects turned 

out to be 64.45 using Selby's metric and 66.24 using our metric. The average percentage 

implementation completeness of control group projects is 80.55 using Selby's metric and 

82.68 using our metric. This clearly indicates that the control group teams who employed 

the traditional approach met the requirements of the system more completely, although 

the difference is not statistically significant (MW = -1.253 and P = 0.2417 for Selby's metric 

and MW = -1.152 and P = 0.2788 for our metric). In the University of Maryland (UM) 

experiment, the average percentage implementation completeness of Cleanroom projects 

is 82.5 and that of the control group teams is 60.0 with M W  significance being 0.088, when 

all the teams, including the worst performers, are included in the analysis. Table 3 summa- 

rizes the performance characteristics of the products developed by all the teams. 

Among the Cleanroom teams, team "B" was the worst performer with respect to 

most of the product quality aspects and contributes negatively to the group's average statis- 

tics. This team consisted of all graduating seniors and the team's average professional expe- 

rience and the average GPA were the lowest among all the teams. Also, this team had 



Oruganti Project Report 

problems complying with the delivery schedule. By removing team B from the analysis, 

the average percentage implementation completeness for Cfeanroom team projects is 74.3 1 

using Selby's metric and 76.55 using our metric, which makes the performance of the Clean- 

room projects closer but still inferior to that of control group teams. So, on the whole, 

the control group teams using traditional approach have delivered systems with more com- 

plete functionality. 

CLEANROOM GROUP 

Attribute Mean Std Dev Median Minimum Maximum MW 
significance 

Percentage implementation 
completeness with Selby's 
metric (ICUM) 64.44 22.68 72.22 25.00 80.56 0.24 
Percentage implementation 
completeness wit MU's 
metric (ICMU) 66.24 23.75 76.61 25.00 83.33 0.28 
Percentage of successful test 
cases without duplicate 
failures CIWODUPS) 74.43 28.38 82.98 25.00 97.92 0.32 
Percentage of successful test cases 
with duplicate frtilures fIWDUPS) 66.40 3 1.54 76.00 12.00 94.00 0.32 
User friendliness index (UFI) 61.08 17.07 59.09 35.71 77.3 1 0.07 

CONTROL GROUP 

Attribute Mean Std Dev Median Minimum Maximum MW 
significance 

Percentage implementation 
completeness with Selby's 
metric (ICUM) 80.55 18.94 88.88 50.00 97.22 0.24 
Percentage implementation 
completeness wit MU's 
metric (ICMU) 82.67 19.42 93.50 51.14 07.22 0.2% 
Percentage of successful test 
cases without duplicate 
failures ('JW0L)UPS) 91.22 8.49 93.62 77.50 98.00 0.32 
Percentage of successful test cases 
with duplicate failures 1-IWDUPS) 84.40 13.81 88.00 62.00 98.00 0.32 
LJser friendliness index (UFI) 85.26 13.54 86.57 67.47 103.60 0.07 

Table 3. Summary of the performance characteristics classified by group 



Oruganti Project Report 

6.1.2. Operational testing results 

In order to select test cases to perform statistical independent functional testing, 

an "operational profile" based on the survey conducted with 10 seasoned mail users at 

Miami University was created. An operational profile is a frequency distribution of inputs 

(and the usage of the corresponding logical functions) to the system. It is instrumental 

in identifying different paths in the system and the probability of their occurrence, which 

in turn, will form the basis for selecting test data. Then 50 user-session test cases were 

formulated with randomly sampled test data based on this operational profile. Some of 

these test cases overlap with the test cases used for checking implementation completeness. 

Independent testing of the final system release of each team (as random user-ses- 

sions) was conducted using these test cases. During the testing process the data about 

the following aspects was recorded: 

1. failures of the system - to compute the percentage of successful test cases 

2. the CPU time between the failures - to compute the MTTF 

3. total elapsed calender time and the elapsed time between failures 

4. general subjective evaluation of the user interface (based on its consistency, 

ease of use and its informational and error messages, etc.) 

A severity code, compatible with Selby's scheme of failure severity classification 

was assigned and recorded for each failure. According to this scheme, a code of 1 is as- 

signed if the product is inoperable, 2, if a major function in the product is inoperable, 3, 

if some part of a major function is inoperable and 4 if it is a cosmetic type failure. This 

information can be used to analyze the failure data to see if there is a specific pattern or 

a set of types of errors that are generally committed by the Cleanroom groups. Also, this 

kind of a classification scheme can be used to discount certain class of failures (say, all 

the failures with a severity code of 4) for MTTF and the reliability computations. This 

information may also be helpful in characterizing the 'robustness' (a characterization of 

the behavior of the system ivhen failures occur) of the system. 

Also, each failure is marked as to whether or not it is a duplicate failure. A failure 

is called a duplicate failure if a similar failure was previously observed while testing a partic- 

ular system. Duplicate failures are significant in a Cleanroom scenario for the follouring 

reasons: The Cleanroom developers did not perform unit-level testing, whereas the control 

group developers did. The control group inembers also performed sub-system testing as 

the product was developed with incremental functionality. Normally, any testing strategy 



Oruganti Project Report 

emphasizes testing of the most commonly used and, very likely, the most important set 

of functions of the system. Thus, it is conceivable that the developer (who is also the tester) 

may develop an intuitive model of the operational profile of the system and use this model 

while designing the test cases. This may then help in eliminating errors in most commonly 

used parts of the systems developed by control group teams. These two aspects together 

with the fact that the operational testing is based on a well-developed operational profile 

make the identification of duplicate failures and discussion of their impact significant. 

Table 3 summarizes the operational performance of the final products developed 

by all the teams. The control group teams had an average of 84.4 percent successful test 

cases when duplicate failures are included and and 91.22 percent when duplicates failures 

are not considered. The Cleanroom teams had an average of 66.4 percent with duplicate 

failures included and 74.43 percent without duplicate failures. Again, this difference is 

not statistically significant (in both cases, MW = -1.0445 and P = 0.3235), but nevertheless, 

control group teams performed better than Cleanroom teams. 

In UM's experiment, the percentage of successful tests without duplicate failures 

for Cleanroom teams was 92.5 and for non-Cleanroom teams was 80.8 (P = 0.055). When 

the duplicate failures are included, however, the better performance of the Cleanroom sys- 

tems was not nearly as significant (P = 0.134) in their experiment. This is essentially caused 

by a relatively higher proportion of duplicate failures in the Cleanroom systems in contrast 

with non-Cleanroom systems. More succinctly, the Cleanroom systems were less sensitive 

to the operational profile than the non-Cleanroom systems. It was theorized that the appar- 

ent less sensitivity to the usage profile was the result of a more uniform review of the whole 

system by Cleanroom developers and that the non-Cleanroom developers focused on a 

"perspective of the tester," which could possibly have been intuitively visualized by the 

non-Cleanroom developers during development. 

What is noteworthy about the results of our experiment is that there is no difference 

in the MW significance levels for percentage of successful test cases with and without dupli- 

cate failures. That is, both the teams are equally sensitive/insensitive to the operational 

profile. If the statistical regression testing was performed properly on both Cleanroom 

and non-Cleanroom systems and if results were made available to the developers in both 

the groups, i t  seems reasonable to expect both the groups to take equal advantage of the 

information. This is because the results of statistical regression tests would, supposedly, 

give a good opportunity (as the project progresses through different incremental releases) 



Oruganti Project Report 

to the Cleanroom developers as well to realize the relative importance of various logical 

sub-functions within the system and to focus development effort accordingly. In fact, 

this (theoretical) opportunity to improve the operational reliability of the system seems 

to be one of the potential benefits of statistical testing in the Cleanroom methodology along 

with providing an opportunity to obtain a meaningful measure of the operational reliability 

of the system. Note that it may not be possible to realize this benefit for the logical sub- 

functions implemented during the very last product increment. 

In addition to characterizing implementation completeness and operational perform- 

ance of Cleanroom and control group products, an organized attempt was made to observe 

various user-interface and other non-functional characteristics of the systems. Several 

aspects that are identified for evaluation are listed in Appendix II. A subjective impression 

of each of these aspects is formed by the independent testing team during this statistical 

testing. The impression on each of the aspects is then evaluated and scored (based on 

an arbitrary abstract scale described in Appendix H) by comparing it against corresponding 

predefined "expected behavior". These subjective impression scores on all of the observ- 

able aspects are then synthesized into an impression index called "user-friendliness-index" 

(UFI) which is computed by adding the individual scores and normalizing the sum by the 

number of valid or observable aspects or attributes. 

Clearly, deriving UFI for the products in our experiment involved a lot of subjectivity 

but it can be argued that the metric is still useful to make a meaningful comparative charac- 

terization of the user-interface issues because, 1) the same person used the same subjective 

evaluations on products of all the teams, and 2) the evaluations could not have been biased 

towards either Cleanroom group products or control group products because the indepen- 

dent tester was not aware of information as to which teams belonged to Cleanroom and 

which belonged to control group until the operational testing phase was finished and the 

analysis phase commenced. 

Table 3 also includes summary of the values of UFI obtained for both the Cleanroom 

and control group products (for more details please refer to Appendix I). The non-Clean- 

room teams had a significantly higher average UFI (85.27) than the Cleanroom teams 

(61.08). It can be concluded from these results that non-Cleanroom teams developed sys- 

tems which are more easily usable, testable and hence more user-friendly (P = 0.066. when 

all the teams are included in Mann-Whitney analysis). This trend was expected because 



Orugantl Project Report 

the Cleanroom developers could not run and observe the 'look and feel' of their programs 

themselves. 

6.1.3. Characterization of Static Properties of the System 

In this sub-section, the size, complexity and data usage patterns of both the Clean- 

room and non-Cleanroom developers are analyzed. 

Source code analysis to collect statistics of the final systems of all the teams about 

the number of source lines, executable statements and comments was performed by using 

AdaMATiD and DCL4. These static properties of the systems developed by Cleanroom 

groups are compared with those of the control groups. 

In UM's experiment, Cleanroom projects possessed a higher percentage of assign- 

ment statements (P = 0.056) and had a lower complexity density (P = 0.079). Table 

4 summarizes the information about number of logical source lines of code, percentages 

of executable statements, declarative statements, IFs, CASES, WHILE loops, FOR loops, 

comments, assignment statements and other statistics of the systems developed at MU (a 

more detailed summary by team is included in Appendix I). The projects from the two 

groups of MU were not statistically different (MW significance > 0.20) in any of these attrib- 

utes. in UM's experiment the developers using Cleanroom wrote code that was more highly 

commented (P = 0.089) and had a lower complexity density. In MU'S experiment, even 

though the Cleanroom developers mentioned that they commented their code thoroughly, 

the non-Cleanroom teams had slightly higher average percentage of comments (non-Clean- 

room average: 12.21596, Cleanroom average: 12.01%, MW = -0.418, P = 0.686). Percent- 

age of executable statements and percentage of declarative statements of Cleanroom and 

control group products were different with noticeable statistical significance (MW = -1.67, 

P = 0.129 and MW = 1.67, P = 0.129 respectively). 

Average number of occurrences of non-local data items (variables, constants etc.) 

is considered by Selby et. al., for studying data usage characteristics of the finished procl- 

ucts. These statistics were used to present an intuitive discussion of their effect on modular- 

ity. AdaMAT/D does a much more thorough job of characterizing modularity by including 

information hiding statistics also. 

Several AdaMATID metrics were obtained (summarized in Table 5 and Appendix 

I) in order to statically characterize product quality aspects such as complexity density, 

4. DCL (DEC Command language) is the shell language of the VAX VMS operating system 



Orugantl Project Report 

modularity, maintainability, reliability, flow complexity and information hiding. The proj- 

ects from the two groups at MU were not statistically different (MW signif. > 0.10) in any 

of these metrics also. The worst Cleanroom performer team 'B' was excluded and the statis- 

tical analysis was repeated. As expected, the difference between any of the attributes of 

Cleanroom and non-Cleanroom projects was not statistically different in this case either. 

In UM's study the operational quality measures of just the Cleanroom products and 

of all the products are correlated with the usage of the implementation language. In that 

experiment, both percentage of successful test cases and implementation completeness cor- 

related positively with the percentage of procedure calls and with percentage of IF state- 

ments and negatively with percentage of CASE statements, with percentage of WHILE state- 

ments. In the experiment at MU most of these correlations are not significant (significance 

> 0.10) when all the team products are considered. 

Percentage of implementation completeness (ICMU), percentage of successful test 

cases with duplicate failures(TWDUPS), percentage of successful test cases without dupli- 

cate failures(TW0DUPS) and user-friendliness index (UFl) cl~aracteristics of all the clean- 

room teams are correlated with team averages of various experience parameters and also 

with various static properties and semantic metrics of the final Cleanroom products. 

Percentage of assignment statements correlated negatively with percentage of 

successful test cases with duplicates (Spearman R = -0.56, significance = 0.089). 

The average number of completed semesters of the members of the Cleanroom 

teams correlated negatively with percentage of test cases with duplicate failures (R = -.8Y, 

signif. = 0.041). It can also be observed by taking a detailed look at  the statistics and the 

profiles of individual teams that some teams whose members are all second semester se- 

niors (3 of which are Cleanroom teams) have performed relatively poorly. This is somewhat 

counter intuitive. The reason for this could be that some outgoing seniors may not consider 

their grades as very important, especially if they already have a job offer. The reason could 

also be that the students taking the course later in their careers are not as strong as their 

counterparts. Percentage of successful test cases with duplicates also correlates with aver- 

age GPA (both overall and GPA in major) of the Cleanroom teams (R = 0.9, signif. = 0.037). 



Orugantl Project Report 

CLEANROOM GROUP 

Attribute Mean Std L)ev Median Minimum Maximum MW 
significance 

Number of physical lines 1388 474.88 1303 836 2006 0.43 
Source lines of code 1002 380.29 820 592 1504 0.55 
Number of logical statements 957.20 366.58 784 555 1436 0.55 
Percentage of comments 12.00 15.52 4.32 2.32 39.26 0.69 
Percentage of assignments 37.31 13.43 39.22 19.29 51.80 0.69 
Percentage of executable 
statements 66.21 6.18 63.97 60.02 74. 10 0.13 
Percentage of declarative 
statements 33.78 6.18 36.02 25.89 39.97 0.13 
Percentage of IF  statements 13.64 2.55 12.80 10.52 17.03 0.99 
Percentage of CASE statements 0.13 0.25 0 0 0.58 0.91 
l'ercentage of FOR statements 4.08 2.83 3.48 0.68 8.33 0.32 
Percentage of WHILE statements 5.20 2.52 6.14 0.87 7.11 0.24 

CONTROL GROUP 

Attribute Mean Std Dev Median Minimum Maximum MW 
signil'icance 

Number of physical lines 1755 635.94 1741 1060 2629 0.43 
Source lines of code 1272 506.54 1136 773 2060 0.55 
Number of logical statements 1232 502.36 1095 73 1 1999 0.55 
Percentage of comments 12.21 8.16 11.16 2.00 24.1 1 0.69 
Percentage of assignments 34.19 6.07 35.74 24.64 41.04 0.69 
Percentage of executable 
statements 74.53 4.03 73.05 70.41 80.90 0.13 
Percentage of declarative 
statements 25.46 4.03 26.94 19.09 29.58 0.13 
Percentage of IF statements 13.70 2.34 13.35 10.56 16.70 0.99 
Percentage of  CASE statements 0.07 0.13 0 0 0.30 0.9 1 
Percentage of FOR statements 2.05 1.72 1.68 0 4.47 0.32 
Percentage of WHILE statements 4.03 1.36 3.36 2.85 5.99 0.24 

Table 4. Summary of the static properties of all the systems 

At the very high-level, AdaMAT/D gives three statistics - Reliability, Portability and 

Maintainability and combines them to give a single overall quality metric (which was la- 

belled as ALL-CRT. ALL-CRT of the Cleanroom products correlated very well with ICMU 

(R = 0.82, signif. = 0.088), TWDUPS (R = 0.975, signif. = 0.005) and TWODUPS (R = 



Orugantl Project Report 

0.975, signif. = 0.005). ICMU correlated with the average time (in months) since the last 

time the programmers programmed in any structured programming language (R = 0.9, sig- 

nif. = 0.037). ICMU correlated negatively with the percentage of FOR loops in the products 

(R = -0.9, signif. = 0.037). When the control group products alone are considered for 

correlation analysis, ICMU, TWDUPS and TWODUPS correlated somewhat with source 

lines of code (R = 0.8, signif. = 0.10) and the user-friendliness index (UFI) correlated with 

source lines of code well (R = 0.9, signif. = 0.037). 

There are other interesting correlations that could be observed when all the products 

are considered. Number of logical source lines of code correlated well with percentage 

of implementation completeness (R = 0.685, signif. = 0.029). Percentage of declarative 

statements correlated negatively with percentage of successful test cases with and without 

duplicates (R = -0.58, signif. = 0.082, R = -0.56, signif. = 0.0897 respectively). Also, per- 

centage of executable statements correlated with both percentage of successful test cases 

with and without duplicate failures (R = 0.58, signif. = 0.082, R = 0.56, signif. = 0.897 

respectively) but did not correlate well with implementation completeness (Spearman signif- 

icance > 0.14). Percentage of assignment statements correlated negatively with percentage 

of successful test cases with duplicates (Spearman R = -0.56, significance = 0.089). Also, 

the percentage of implementation completeness computed using our metric has correlated 

with the AdaMATID metric PORTABILITY (R = 0.6, signif. = 0.066). 

Surnmury ofthe eflect on the product developed: 1 )  Many of the patterns that were observed 

in UM's study were not observed in ours; 2) even though there are some very interesting 

correlations when Cleanroom products are considered alone or together with control group 

products, it is not clear whether the number of teams (5 - Cleanroom and 5 - control group 

teams) is adequate to make any valid inferences. 



Oruganti Project Report 

CLEANROOM GROUP 

Attribute Mean Std Dev Median Minimum Maximum MW 
significance 

All criteria 0.77 0.02 0.78 0.73 0.79 0.42 
KELIAHILITY 0.52 0.06 0.49 0.47 0.61 0.99 
MAINTAINABILITY 0.57 0.04 0.60 0.52 0.63 0.32 
POKTAHILITY 0.86 0.02 0.86 0.84 0.89 0.32 
MOI3ULAKITY 0.86 0.06 0.84 0.8 1 0.97 0. I8 
SIMPLI('I'TY 0.55 0.10 0.49 0.47 0.68 0.Y9 
FLOW TOMPLEXITY 0.620 0.11 0.57 0.51 0.75 0.92 
LO('AL,IZELl INFORMATION 0.88 0.08 0.86 0.79 1.00 0.24 
SYS'I'EM ('LAKI'TY 0.56 0.11 0.53 0.47 0.75 0.95, 

CONTROL GROUP 

Attribute Mean Std Dev Median Minimum Maximum MW 
significance 

All criteria 0.78 0.0 1 0.79 0.76 0.80 0.42 
KELIABILI'I'Y 0.50 0.08 0.53 0.36 0.60 0.99 
MA1 N'I'AIN ABILI'TY 0.54 0.04 0.56 0.48 0.60 0.32 
P( IKT'3ILITY 0.88 0.02 0.87 0.86 0.93 0.32 
MOUU LARI'I'Y 0.89 0.01 0.90 0.87 0.0 1 0.18 
SIMPLIVI'I*Y 0.50 0.09 0.52 0.35 0.6 1 0.99 
FLOW ('OMPLEXITY 0.63 0.14 0.69 0.38 0.75 0.92 
I,( )CALIZED-INFORMATION 0.95 0.03 0.97 0.9 1 1 .(I0 0.24 
SYSI'EM ('LARI'I'Y 0.562 0.1178 0.54 0.42 0.71 0.99 

+ 

Table 5. Summary of some AdaMAT metrics characterizing static and 
semantic properties of the final products (organized by group) 

6.2. Characterization of the effect on the development process 

In order to characterize the effect on various aspects of the development process 

and on the developers, a post-development survey was conducted. Results of this survey 

are summarized in the following t~vo sections. Three persons in the Cleanroom teams did 

not respond to the survey. Among the 12 respondents, one person did not respond to any 

of the questions on the backside of the sheet. Only 8 of the total 15 members of the control 

group teams have responded to the survey. 

It can be observed from table 6 that, about 80 percent of the Cleanroom developers 

(who responded to the survey) felt that they have used off-line review techniques effectively 

at least for certain parts of the system. 



Orugantl Project Report 

5 - Yes, they were effective for testing ail parts of the program. 
5 - We used them but felt that they were only appropriate for certain parts 

of the program. 
2 - We used them occasionally, by they were not really a major contri- 

buting factor to the development. 
0 - We did not really use them at all. 

Table 6. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "Did you feel that you 

and your team members effectively used off-line review techniques in 
testing your project? " 

Also, it is important to try to understand any effects of familiarity or unfamiliarity 

with the programming language on the development process. The summary of the re- 

sponses from Cleanroom developers (Table 7) for a question regarding this aspect provides 

us some help in gauging this effect. Many Cleanroom developers mentioned having diffi- 

culties in understanding or visualizing the behavior of certain Ada constructs and features. 

The information gathered from Table 7 indicates that half of the Cleanroom develop- 

ers thought that their progress was substantially impaired and the rest thought that their 

progress was marginally affected by their lack of knowledge of Ada, whereas most the of 

the non-cleanroom developers who responded to this question seemed to think that their 

lack of knowledge of Ada had little or no effect on their progress in their projects. 

Table 7. Breakdown of responses to the post-development attitude survey 
question, "Did your familiarity with Ada (or lack of it) affect your proj- 
ect?". 12 Cleanroom developers and 8 non-Cleanroom developers re- 

sponded to the question. 

Option 

No, my knowledge of the language did not play a role. 

It hindered our rate of progress a little bit. 

It slowed our development substantially. (with file-io) 

It made the project nearly impossible. 

Some of the Cleanroom developers mentioned in their comments that they could 

not use off-line review techniques effectively enough not only because of their lack of prior- 

Cleanroom de- 
velopers 

0 

6 

5 

1 

knowledge and experience with Ada language but also because of their inexperience with 

Non-Cleanroom 
developers 

1 

7 

0 

0 
-I 

off-line review techniques. A few developers mentioned that it was frustrating to be re- 

stricted to off-line review only. 



Oruganti Project Report 

Summary of the effect on development process: Summarizing the effect of Cleanroom approach 

on the development process, many of the Cleanroom developers 1) felt that they applied 

off-line review techniques moderately effectively, 2) made all their scheduled deliveries, 

3) felt their lack of knowledge of Ada adversely affected their product's quality and their 

productivity, whereas, majority of non-Cleanroom developers did not see any such effect. 

6.3. Characterization of the Effect on the Developers 

In the Cleanroom method the developers are not allowed to do any execution-based 

unit-level testing. That is, the developers are not allowed to verify the correctness of opera- 

tion of the programs or program-components that they coded by executing them. Naturally, 

this induces some dissatisfaction among the Cleanroom developers. Table 8 summarizes 

the reactions of the Cleanroom developers to this aspect. 

10 - Yes, I missed the satisfaction of program execution greatly 
1 - i somewhat missed the satisfaction of program execution 
1 - No, I did not miss the satisfaction of program execution 

Table 8. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "Did you miss the satis- 

faction of executing your own programs? " 

As can be clearly seen from Table 8, most of the programmers missed the satisfac- 

tion of executing their programs. One developer missed the satisfaction especially during 

the end of the project and one other mentioned being frustrated about not being able to 

execute their code. 

It is also interesting to observe the effect of prohibiting execution-based unit-level 

testing on the design and coding style of Cleanroom developers. From Table 9, we can 

see that many Cleanroom programmers mentioned modifying their style, although a few 

said they did not modify their style. A review of frequently mentioned responses reveals 

that the Cleanroom developers made conscious efforts to be more careful and assertive 

about their programs and to produce more readable (self-descriptive) code by including 

comments and using meaningful nomenclature. 



Orugantl Project Report 

0 - Yes, my style was substantially revised. 
9 - I modified some of my tendencies. 
3 - I did not modify my style at all. 

Frequently mentioned responses included: 
thought about everything (designs and programs) more carefully than ever 
made the code more readable with many more comments 
exercised better planning of individual tasks ahead of time 
wrote code on paper and checked it thoroughly before entering into the computer 
used a less elegantiesoteric style which the developer was more sure of 
used more meaningful names and commented it more. 

Table 9. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "How was your design 

and coding style affected by not being able to test and debug?" 

As per the framework of goals laid out before, the last aspect that remains to be 

addressed in order to characterize the effect on the developers is the impression that the 

Cleanroom method left on the Cleanroom developers. Responses for the five questions 

included in the post-development survey (summarized in tables 

10,11,12,13,14) provide us helpful information to assess this impression. 

From table 10 and table 11, we can gather that about 67 percent (as opposed to 

81 percent in UM's experiment) of the Cleanroom developers indicated their willingness 

to use the Cleanroom method again if an opportunity arises. Some developers suggested 

using a combination of off-line and on-line techniques for development. 

1 - Yes, at all times. 
7 - Yes, but only for certain projects. 
2 - Not at all. 

Notes: 
Two persons said they would not use the Cleanroom method at all because, they believed 
that Cleanroom needs more time, effort and manpower. Another Cleanroom developer 
refrained from commenting on the issue, because of lack of "enough" experience with Clean- 
room. 
Some Cleanroom developers felt that it demands superior programming skills. 

Also note that, 3 Cleanroom developers did not respond to the survey itself. 

Table 10. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "lf you were a software 

development manager, would you use Cleanroom technique" 

The person whose response was "I would leave the job if I had to use Cleanroom 

method as a programmer" belongs to the Cleanroom Team "B", which is the worst perform- 

er among all the teams with respect to most of the product quality aspects. Also note that 

only one person responded to the post development survey from Team "B" 



Oruganti Project Report 

1 Yes, for all my projects 
5.5 Yes, but not all the time 
2.5 Only if I had to. 
1 I would leave the job if  I had to. 

Notes: 
One person, responded to the questions in the first page of the survey, but did not answer 
any of the questions on next page including this question. 
Another person chose not to answer it. 
One person checked both second and third alternatives, therefore we see half-responses. 

Also note that, 3 Cleanroom developers did not respond to the survey itself. 

Table 11. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "If you were employed 

as a programmer, would you prefer using Cleanroom development ap- 
proach?" 

Figs. 12,13 and 14 summarize the responses of Cleanroom developers to three simi- 

lar and related questions about the applicability/utility of the principles involved in the 

Cleanroom approach. The fact that these responses appear to be quite consistent with each 

other could be an indication that the respondents were careful in answering the questions, 

and atso gives us more confidence that these responses may be the representations of their 

true opinions or feelings. 

3 Yes, for all applications. 
6 Yes, for some applications. 
1 for only specialized situations. 
1 Not at all. 

Table 12. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "Do you believe that 
the cieanroom development technique should be applied in commercial 

software production?" (1 1 Cleanroom developers responded) 

One of the developers who voted for using Cleanroom only for some applications 

also mentioned that off-line review techniques may be effectively used in cases where real- 

life on-site operational testing is too expensive or too catastrophic. Some others were ap- 

prehensive about using Cleanroom for business applications such as report generators and 

for real-time applications. 

- 
1 - Yes, I think that the cleanroom concept attains these goals. 
8 - Yes, but it depends greatly on the programming and testing abilities of the people involved. 
1 - the software will be just as reliable as that produced in another development environment. 
0 - It will produce less reliable software. 
1 - It will fail to produce any software. 



Oruganti Project Report 

Table 13. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "Do you agree that the 
separation of the development and (on-line) testing process can lead to 

the production of more reliable and higher quality software?" 

6 It requires more effort but produces a higher quality product. 
2 It requires less effort and produces a higher quality product. 
2 It requires more effort and produces a lower quality product. 
0 It requires less effort and produces a lower quality product. 
1 It makes no difference in effort or quality. 

Table 14. Breakdown of responses from Cleanroom team members to the 
post-development attitude survey question, "Do you feel that the 

Cleanroom development method is a cost-effective development ap- 
proach?" 

Several Cleanroom developers felt that this method saves on-line testing and debug- 

ging time, that it produces more readable, maintainable, carefully thought-out, organized 
C 

("clean") and coherent code and that it makes the programmers understand the application 

and their code better. Some developers opined that both off-line review techniques and 

on-line unit level testing should be used together and that off-line review should precede 

on-line unit-testing. 

Both the Cleanroom and the non-Cleanroom developers were asked to comment 

on the advantages and disadvantages of off-line review and on-line unit-level testing. Here 

we will summarize their responses. Some developers felt that off-line review improved 

their confidence in their programming skills and especially in the code that they produced. 

Some developers felt that by using off-line review techniques on small portions of the sys- 

tem, they lost the 'big picture'. Some others mentioned that due to independent testing, 

their progress was adversely affected by the test result turn-around time. But this could 

have been offset by a careful planning and scheduling of development during various prod- 

uct increments so that some developing continues while independent testing is being per- 

formed. There are mixed feelings about the speed of on-line and off-line techniques. 

On-line testing (and debugging) helps not only in discovering the presence of a bug, 

but also in localizing the physical location of the source of the bug. It also provides a niore 

thorough understanding of the bugs. It helps more in developing user-interfaces and for- 

matted output as the output/interface can be witnessed as opposed to visualizing and imagin- 

ing in the case of off-line review techniques. Some Cleanroom and non-Cleanroom devel- 

opers felt that a major disadvantage of on-line testing is that it forces a habit of 



Oruganti Project Report 

'trial-and-error' programming. It was suggested by some Cleanroom developers that they 

be allowed to witness the independent testing process. Probably a log record of the testing 

session would suffice. Some Cleanroom developers suggested using a carefully planned 

combination of both off-line and on-line techniques. 

Summary of the eflect on the developers: In summary, many of the Cleanroom developers 

1)partially modified their development style to make their code more readable and coherent, 

2)missed the satisfaction of program execution, 3)indicated that they would use the ap- 

proach again and 4)felt that Cleanroom approach and off-line review techniques can be 

effectively used at least for certain kinds of projects. 



Oruganti Project Report 

7. Interpretation of analyzed data 

Clearly, the non-Cleanroom teams produced systems with more complete function- 

ality and better operational reliability and in general, performed better than the Cleanroom 

teams. whereas, the Cleanroom teams in UM's experiment performed significantly better 

than the non-Cleanroom teams in most of the product and process quality aspects. 

It is very important to realize that great caution should be exercised while drawing 

any implications or inferences or conclusions about effectiveness of Cleanroom technology 

based on the results of the experiment done at MU. Especially, it is not reasonably founded 

to claim or infer that the Cleanroom software development methodology is ineffective based 

on the fact that Cleanroom teams did not perform as well as the control group teams. 

The reason for this (which can be derived from sections 2 and 3.2) is that, we in MU'S 

experiment have not used the Cleanroom software development methodology in its totality, 

but used only certain components of the technology. In fact, previously published research 

reports unanimously tout the effectiveness of Cleanroom methodology and/or its component 

techniques in both academia and corporate world[2,8,14,17,16,21]. Therefore, an attempt 

is made here to thoroughly analyze the experimental set up at MU and compare and contrast 

it with that of UM's experiment and other Cleanroom experiences quoted in the literature. 

1 .P r  * Q -  fe i n  x - e r i n  r 

nent Techniaues: Several Cleanroom developers of the University of Maryland have already 

utilized some of the ideas in the Cleanroom (1211, page:1034), whereas none of the Clean- 

room developers at Miami had any such exposure. The Cleanroom developers of UM men- 

tioned (in the post-development attitude survey conducted by Selby et.al.) that their experi- 

ence with some of the Cleanroom ideas, especially off-line review techniques, was very 

useful. The prior first-hand experience of UM Cleanroom developers would, conceivably, 

facilitate better insight into the ideas of Cleanroom and hence significant pragmatic and 

psychological advantage to them over the Cleanroom developers of MU. 

An important aspect to consider is that the average professional experience of UM 

developers is 19 months whereas the average professional experience of the MU developers 

is 4.2 months. Professional experience is an important factor to be considered for two 

reasons. Firstly, software development experience in the corporate world imparts practical 

knowledge and presumably helps in improving design, programming and/or analytical skills 

and also in better organizing one's own work and monitoring and fostering team's overall 

progress. Secondly, it generally improves the overall confidence of the developers, thereby 



Orugantl Project Report 

preparing them for taking up new challenges like Cleanroom development. Therefore, this 

factor could have considerable impact on the results obtained in both the experiments and 

calls for extreme caution and critical analysis before any inferences could be made by com- 

paring the results of UM and MU. 

Also, another aspect worth noting about the experiment at IvlU is that, on the aver- 

age, the non-Cleanroom developers had approximately 37 percent more professional expe- 

rience than the Cleanroom developers. There was no mention of such a difference in UM's 

experiment. This discussion leads one to argue that the effectiveness of the Cleanroom 

methodology and its component techniques is significantly affected by the following param- 

eters: the general professional software development experience of the developers, extent 

and quality of training imparted to the developers and the psychological preparation of 

the developers. This is also suggested by Dyer[l4] and by the fact that, in most of the 

projects which employed the Cleanroom methodology or its components successfully in 

the corporate world, the developers were given moderate to extensive training in the under- 

lying concepts of Cleanroom[2,8,17,16,21]. In addition to teaching the mechanics of the 

Cleanroom techniques, this training could possibly convince them about the effectiveness 

of the method and psychologically prepare them for using the method even before starting 

development. 

There is not any information about the kind and the extent of the training (if any) 

that was imparted to the Cleanroom developers of UM, and about any efforts made by 

Selby et.al. to instill confidence in the Cleanroom developers. But, no such attempt was 

made at MU. 

2. us in^ Object-Oriented Approach to Development at MU: In Miami's experiment, 

both the Cleanroom and non-Cleanroom teams developed their systems suing relatively 

new object-oriented principles and an object-based language Ada. The Cleanroom and 

non-Cleanroom developers of the University of Maryland used more traditional structured 

design and coding techniques. Firstly, this mixture of object-oriented principles and Clean- 

room techniques makes the task of the Cleanroom developers at NIU a tougher challenge 

than that of the Cleanroom developers of the University of Maryland. More importantly, 

it is not clear what kind of tools are necessary for learning (and effectively using) object-ori- 

ented principles. It may be that being able to execute one's programs and observe their 

behavior in operation is a very useful learning tool while practicing object-oriented pro- 

gramming, in which case, it is unfair to compare the performance of the MU Cleanroom 



Orugantl Project Report 

teams either with that of either the non-Cleanroom teams of MU or the Cleanroom teams 

of UM. Some Cleanroom team members mentioned that time given was not sufficient. 

This may also indicate that Cleanroom teams might have been subjected to more work load. 

It was frequently mentioned by the Cleanroom developers of MU that they had diffi- 

culty in visualizing the behavior of some of the input/output packages of Ada predefined 

environment such as Text-10, File-10 etc., and hence they had difficulty in (re)using these 

packages in their projects. This aspect was anticipated by Dr.Kiper in advance but the 

effect seemed to have persisted in spite of an attempt in which individual programming 

exercises outside the project which involve using these packages had been assigned to all 

the students in the class. Cleanroom developers were also allowed to run and observe the 

behavior of these packages in these exercises prior to the beginning of the project. 

It also seems possible that Ada, the implementation language of MU teams, may 

be inherently more complex and difficult to learn and use than Simple-T which is the imple- 

mentation language of UM teams. This again rises the question of fairness of comparison 

between the results of MU and UM experiments. 

3. Some psycholo ical aspects of import: At UM, the Cleanroom group teams and 

control group teams belonged to different courses to combat Hawthorne effect. Hawthorne 

effect is related to the issue of comparing a newer technique with an established one, where- 

in, the people involved in the experiment with the newer technique "try harder" to make 

i t  work and more so if they are aware of the competition. At MU both the Cleanroom 

and non-Cleanroom teams belonged to the same course. 

One thing that could have happened as a consequence of combining Cleanroom and 

control group teams in one class is Hawthorne effect, but evidence of that did not surface 

either in terms of superior performance characteristics of Cleanroom products or in terms 

of the comments in post-development attitude survey. On the other hand, the Cleanroom 

developers may have been subject to peer competition (with the non-Cleanroom teams) 

in addition to the unavoidable academic pressure associated with the project which could 

ultimately reduce the confidence of the developers and lead to frustration. In order to 

minimize any such effects, all the students in the class were told that the Cleanroom and 

Control group teams would be graded independently, that there was no intention to encour- 

age competition between Cleanroom and non-Cleanroom group teams and that the teams 

from each group would compete among themselves. Inspite of these efforts, as already 

noted, some Cleanroom developers of MU mentioned having had frustration at least at 



Oruganti Project Report 

the beginning and/or ending of the project. This could influence them psychologically so 

as to adversely affect the quality of their products and their productivity. 

4. Some aspects that could have impact on statistical analysis: The number of Clean- 

room teams in MU'S experiment is 5 and equal to the number of non-Cleanroom teams. 

whereas, the number of Cleanroom teams in UM's experiment is 10 and twice that of the 

non-Cleanroom teams of UM. This may have some impact on the statistical analysis, 

especially, if the number of data values is small, the differences should be more pronounced 

in order for them to be statistically significant. Also, there were no graduate students and 

there was one sophomore involved in MU'S experiment and there was a mixture of graduate 

students, seniors and juniors in UM's experiment. Note that these are uncontrollable pa- 

rameters of the experiment. 

Another interesting thing to note is that, in addition to having 37 percent more aver- 

age professional experience, on the average, the non-Cleanroom developers at MU had 

significantly more average experience being part of "mujor" software projects (note that 

"major" is not clearly defined and may lead to varying assumptions). But the non-Clean- 

room developers had somewhat less (about 7 percent) overall GPA in their major (Systems 

Analysis) courses. This might indicate that hands-on development experience and team 

exposure contribute more to progress in software development than academic performance. 



Orugantl Project Report 

8. Conclusions 

In this experiment the Cleanroom group members were forced to learn a new lan- 

guage and a new programming method (OOD and OOP) in addition to using new develop- " 

ment process techniques (i.e., off-line review techniques for unit-level verification in con- 

junction with independent functional testing of incremental product releases). Both the 

Cleanroom and the control group developers were trained in Ada and Object-Oriented prin- 

ciples in the course "Object-Oriented Programming with Ada", but owing to time con- 

straints, the Cleanroom developers were not given any training in off-line review, especially 

in code-reading with step-wise abstraction, or in any other Cleanroom component tech- 

niques. Despite these challenges the Cleanroom developers produced working systems, 

although the products were not as "good" as the control group products. This together 

with the fact that no conclusive inferences could be made about effectiveness or ineffective- 

ness of Cleanroom component techniques indicate need for further investigation. 

The sensitivity of such future studies could be improved by 1) experimenting with 

one component technique (or a specific set of techniques) of a methodology at a time, so 

that the effects (on the product, process and people) can be related or attributed directly 

to that technique (or the set of techniques); 2) making the control group more controlled 

by defining its role clearly and objectively such that the only difference between the exper- 

imental group and the control group is the aspect that is being experimented with. As 

implied in section 4.2, this is easier said than done; 3) separating Cleanroom and non- 

Cleanroom teams so that they belong to different semesters, just as was the case in UM's 

experiment; and 4) increasing the number of the teams. The validity of the results of the 

empirical experiments in software engineering, or for that matter in any engineering disci- 

pline, can be assessed by replicating the experiments and verifying the results. 

Selby et. al, suggested some possible further research directions in this area such 

as: assessment of the applicability of Cleanroom to development of larger software prod- 

ucts, further characterization of the number and types of errors that occur when Cleanroom 

is or is not used. In addition to these, we suggest experimenting with one or more Clean- 

room component techniques after imparting some reasonable amount of training in using 

these techniques. 



References 

Project Report 

[ 1 1  Carlo Ghezzi, Mehdi Jazayeri and Dino Mandrioii, "Fundamentals o f  Software Engineering", 199 1, 
Prentice Hall, Englewood Cliffs, NF 07632. 

121 Carmen J .  Trammell, Leon H. Binder and Cathrine E. Snyder, The Automated Production Control 
Documentation System: 4 Case Study in the Cleanroom Software Engineering, ACM Transactions 
on Software Engineering and Methodology, 1/01. 1, No. 1, January 1992, Pages 8 1-94. 

131 D.H. Hutchens and V.R. Basili, "An empirical study of a syntactic metric family," IEEE Trans. 
Soft. Eng., vol. SE-9, pp.664-672, Nov.1983. 

(41 Debra J .  Richardson, Owen O'blalley and Cindy Tittle, "Approaches to Specification-Based Test- 
ing", ACM publication, 1989, pages: 86 - 96. Authors' contact: {Information and Computer Sci- 
ence, University of California, Irvine, CA 927 17.) 

151 E.N. Adams, "Optimizing Preventive Service of Software Products," IBM J .  Research and Develop- 
ment, Jan.  1984. 

[ 6 ]  G.J. Myers, Software Reliability: Principles and Practices, New York: Wiley, 1976. 

171 H.D. Mills, "Mathematical Foundations for structured Programming," IBM TR FSC72-60 12, 1972. 

181 Harlan D. Mills, Michael Dger and Richard C. Linger, "Cleanroom Software Engineering", IEEE 
Software, September 1987, pages 19 - 24. 

[ 9  1 John D. Musa, Anthony Iannino and Kazuhira Okumoto, Softivare Reliability - Mea.rurenlent, Pre- 
diction, Application, McGraw-Hill Book Company, 1987; ISBN 0-07-044093-X. 

[ 101 John H. Rowland, Yu Zuyuan, "Experimental Comparison of Three System Test Strategies - Prelimi- 
nary Report, ACbl journal, 1989, pages: 14 1 - 149. 

[ 1 l ]  IC1.H. Halstead, Elements of Software Science. Kew York: North-Holland, 1977. 

[ 121 41.E. Fagan, "Design and Code Inspections," 1Bbi Systems Journal, Vo1.17, 1978. 

[ 131 hlichael Dyer and A. Kouchakdjian, "Correctness Verification," Insofrmation and Software Tech-  
nology, Vo1.32, 1990. 

[I41 Michael Dyer, The Cleanroon? Approach to Q~iality Softivare De~*elnpmenr. John Wiley and  Sons, 
Inc., 1992, ISBN 0-47 1-54823-5 

[ 151 R. C. Linger, H .  D. hIills, and B.I .  CVitt, Str~tctured Prograr7?1?1rng: TI~eol-y clnd Practtce, Adclison- 
LVesl~, 1979. 

[ lhl R~chard C Llnger. Harlan D 91111s, A Case Stud\ in the Cleanrooni Softuare Englneer~ng. The  
IBWl COBOL Structur~ng F a c ~ l i t ~ ,  Proc Computer Sottware and Appl~catlons Cont., CS Pres.;, Los 
Alamitos, Callf , 1988 

[ 17) Richard H. Cobb and Harlan D. Mills, Engineering Software under Statistical Quality Control, IEEE 
Software, Vol. 7, No. 6, November, 1990, pages: 44 - 54. 



Orugantl Project Report 

[ 181 Richard Hamlet, , "Theoretical Comparison of Testing Methods", ACM publication, 1989, pages: 
28-37. work supported by NSF grant CCR-8822869. Author contact: {Comp. Science Dept. ,  
Portland State University, Portland, OR 97207, USA, hamlet@cs.pdx.edu, (5031-464-32 16) 

[19] Roger S. Pressman, Software Engineering, a practitioner's approach, 2nd Ed., TvlcGraw-Hill Series 
in Software Engineering and Technology, 1987. 

[20] Richard W. Selby, "Evaluations of Software Technologies: Testing, Cleanroom and Metrics", Ph. D 
Thesis Dissertation, May 1985, University of Maryland, College Park, Technical Report-1500 

1211 Richard W. Selby, Basili R. Victor, Baker F. Terry, "Cleanroom Software Development: An Empiri- 
cal Evaluation", IEEE Transactions on Software Engineering, L'ol. SE- 13, No .  9, September 1987. 

1221 T. Love and A.  Fitzsimmons, "A Review and Evaluation of Software Science," ACR.1 Computing 
Surveys, vol. 10, no. 1, hfarch 1978. 

(231 Victor R. Basili, Hutchens D.H., "An empirical study of a syntactic metric family", IEEE Transac- 
tions on Software Engineering, Vol. SE-9, pp.664-672, Nov. 1983. 

(2-11 \'ictor R. Basili and Richard Selby, "Comparing the effectiveness of software testing strategies", IEEE 
Transactions on Software Eng., SE- 13, (December, 1987). 1278-1256. 

125) Victor R. Basili, Richard 'lV. Selby and David H. Hutchens, "Experimentation in Software Engineer- 
ing", IEEE Transactions on Software Engineering, Vol. SE-12, No. 7, JULY 1986, pp: 733 - 743. 



Appendix I 

Project Report 

This appendix contains detailed (by team) summaries of various aspects considered 

in the study. 

Average Average Average profess~onal Average Average 
n u m h e ~  of n ~ ~ n i h e t  of exper ~ence of wet all (;PA OI',A of lea111 

Group setne'stc~ s major conlputer ten111 inemhers of team ~ne~i ihe t  111 

coiiipietecl projects parttc~pnted ( ~ n  tnonths) meml1er.s major (Systen~s i \na lys~s i  

A 5.00 1.00 4.35 3.550 3.60U 
B 7.00 2.66 4.0t) 2.990 2.70(1 
(- 7.00 1 .00 3.33 3.300 3.50() 
L) 7.00 1.50 3.16 3.201) 3.130 
E 5.66 0.33 3.00 3.700 3.7M) 
a 6.66 1.66 6.33 2.800 2.8ot) 
b 6.50 2.00 5.33 2.7OU 2.866 
c 5.50 1.33 7.00 3.280 3.280 
d 5.00 2.00 3.66 3.125 3.025 
e 7.W 1.33 2.00 3.620 3.750 

M 6.23 1.48 4.22 3.227 3.235 
CM 6.33 1.30 3.57 3.348 3.326 
NC'M 6.13 1.66 4.86 3.105 3.144 
MWS 0.53 0.32 0.33 0.324 0.686 

NOTES and LEGEND: 

Group The label asstgned to the team (All ('leanroom teams are labeled with capitals and 
control group teams are labeled w~th  small letters) 

M average of the corresponding metrlc of the products of all the teams 
('M average of the corresponding metric of the products of Cleanroom teams 
Nt 'M average of the corresponding metric of the products o f  non-Cleanroom products 
MWS the Mann-Whitney significance level 

Average GPA statistics were computed from the GPA reported by the individual students tn their 
responses to the pre-development experience survey. 

If any team member did not respond to a particular question, team average for the corresponding 
attrtbute (e.g. (;PA), was computed using the responses of the rest of the team members. 

Summary of the pre-development experience survey by team 



Crugantl Prolect Report 

Percentage Percen tage Prrcentnge of Petcrnlage of 1 Isel- 
Group ~mplemenlat~on ~niplementat~on sttccessful test sttccessful lest frienilltness 

completeness cornple teness cases w~thottt case? w1tl1 1 ntlex 
( UM's metnc) (MU'S metric) dupltcare failures cluplrcales 

A 77.78 83.33 97.92 94.0(1 56.82 
B 25.00 25.00 25.0Jf.l 12 .0  35.7 1 
C 80.56 78.69 82.0% 7X.OU 77.31 
D 72.22 76.61 81.82 72.00 59.04, 
E 66.67 67.58 84.44 76.(H) 76.47 
a 50.00 51.14 77.50 h2.(X) 78.12 
b 97.22 97.22 98.00 98.00 0 . 5 8  
c 9 1.67 94.9 1 97.87 92.00 86.57 
d 75.00 76.6 1 89.13 82.00 67.47 
e 88.88 93.50 93.62 88.00 103.60 

M 72.50 74.46 82.83 75.40 73.17 
('M 64.45 66.24 74.43 66.40 6 1.08 
N('M 80.55 82.68 91.22 84.40 85.27 
MWS 0.242 0.279 0.324 0.324 0.066 

LEGEND 

Group The label asslgned to the team (All ('leanroom teams are labeled wlth capitals and 
control group teams with small letters) 

M average o f  the correspond~ng metric of the products of all the teams 
('M average of the correspond~ng metrlc ol' the products of ('leanroom team% 
NCM average of the cctrrespond~ng metric ol' the products of non-('leanroom products 
MWS the Mann-Wh~tney signhcance level 

Summary of the performance characteristics of all the products 



Oruganti Project Report 

Summary of the static properties of all the systems 

Nuinherof Source Nmberof Pcicentage Percentage Percentaqe Percentaqe Percentnge Percentnge Fnqe Pe~centaqe 
Group Ph\sical lmes 1 me? of logical of of of evecutable of declarative nf Ir of CASE of FOR of Wl I l l  r 

Cotle Statements a~mments  assignnlents statements statementq ctote~nents ctatelnent- loop- loc)l)r 

A 1303.0 820 784 39.27 28.57 74.11 25.89 17.04 0.00 0.69 5.16 
H 1075.0 802 769 3.99 39.23 63.98 36.02 12.80 0.00 8.33 6.71 
f' 200h.0 1504 1436 2.33 47.68 60.03 39.97 12.53 0.00 3.48 6.15 
D 1720.0 1294 1242 4.33 51.81 71.34 28.66 15.35 0.1 1 2.93 7.1 1 
E 836.0 592 555 10.14 19.30 61.62 38.38 10.53 0.58 4.97 0.88 
a 1250.0 945 900 8.78 41.04 72.56 27.44 15.16 0.3 L 0.00 3.37 

t 2629.0 2060 1999 11.17 36.59 75.74 24.26 10.57 0.07 1.12 3.04 
c 1741.0 1136 1095 24.12 24.64 70.41 29.59 13.36 0.00 2.08 2.85 
d 1060.0 773 731 15.01 32.96 73.05 26.95 12.73 O.CJ0 1.69 5.W 

e 2095.0 1448 1435 2.00 35.75 80.91 19.09 16.71 0.00 4.48 4.91 

M 1572 1137 1095 12.11 35.76 70.37 29.63 13.68 0.1 1 3.07 4.62 
CM 1388 1002 957 12.01 37.32 66.22 33.79 13.65 0.14 4.08 5.20 
NCM 1755 1272 1232 12.22 34.20 74.53 25.47 13.71 0.08 2.05 4.03 
MWS 0.425 0.546 0.546 0.686 0.686 0.129 0.129 0.999 0.91 0.32 0.24 

NOFE. rlie nun i l~e r~  In the brackets of the AtlnMAT nielllcs 111 coprtals are the relatlve level of that nietrtc 111 the lilelnrcliy 

Groilp The lahel nss~gneci to the team (All Cleanroom teams are laheled with caprtals :lnd control grt 
teams ale Inheled with s~~ ia l l  letters 

Nuriilie~ of pliys~cal llnes h tn l  Nt~niher of l ~ n e s  PIlYSIC AL-I INES( 7 )  - l'IIYSlC'A1,-BI ANK-L INlS(4)  - 
COMMENTED-LINES-BLANK(6) - C OMMEW-LINES-BLANK( 5 

Sorrrce l~ries of code (SLOC ) SI O C  or LC>GIC AL-UNJ:S( 3 )  of Ada 
N~rniher of log~cal .itntemelit~ (Al-stints) SIAI'EMEN IP of AclaMAL'(~nclucles rleclnrat~ve. executahle and others) 
Numher of rlecl,tr;ttrves (I>ecls) DEC LARATEVE-STATEMENTS of AclaMATiD 
Nunlhe~ of rxecutnhles (Execs) EXECIITABI E-STi\TE&fENTS( 5 )  
Nt~nihec of commer~l.; (C<~rrrments) C OMMENTEI>-IdNCS-WIT1 I- TEXT( h )  + 

COMMENT-1,INES-W1m-I-TEXT(5) of AdaMAT 
Nunihel of :~.ss~gnrnents (Assnn1t.i) ASSIGNMENT-STATEMENTS of AclaMAr 

Percentage of  IFs IFstmts* 100/Execs Percentage of  CASES CASES" l0WExecs 
Percentage o f  FOR loops FUKs* 100/Execs %age of WHLE loops WHLEsH 100/Execs 
Percentage o f  Assignments Assnmts*100/Execs %age of Comments ('omments" IOO/SLOC 
Percerntage of Executables ExecsllOO/A1-Stmts %age of Declaratives Decls*100/Al-Strnts 

I 



Orugantl Project Report 

fjKOUP ALL-CRI' RELIABL ErlAINTAIN PORT MODULKIY SIMPLCTY FLOW LO<'-IN170 SYSC'1,RN 

A 0.79 0.47 0.60 0.88 0.84 0.47 0.57 0.86 0.75 
B 0.73 0.49 0.53 0.85 0.81 0.49 0.54 0.82 0.49 
c' 0.78 0.56 0.61 0.86 0.82 0.65 0.73 0.79 0.53 
I> 0.77 0.47 0.52 0.89 0.86 0.47 0.51 0.94 0.47 
E 0.78 0.6 1 0.63 0.84 0.97 0.68 0.75 1 .W 0.56 
a 0.79 0.60 0.58 0.87 0.90 0.6 1 0.75 1 .(lo 0.49 
b 0.76 0.53 0.52 0.87 0.91 0.52 0.69 0.97 0.42 
c 0.80 0.52 0.60 0.89 0.89 0.52 0.68 0.94 0.7 1 
d 0.77 0.53 0.56 0.86 0.87 0.53 0.69 0.9 1 0.54 
e 0.80 0.36 0.48 0.93 0.90 0.35 0.38 0.97 0.65 

NO'I-E: The nul~~bet- in the brackets of the AdaMAT metrics in capitals is the relative level of that metric in the 1iier:lrchy 

Group The lahel assigned to the tennt (All ('leanroom teams are Inbelecl with capital letters 
and control group teams are labeled with snlilll lelters 

All-C'RT ALL-CRITITRIA of AdaMAI'( 1) 
RELIARL REI,IABILI?Y of Atl;rMAT( 1 ) 
MAINTAIN MAIN'WINABII.ITY( 1 ) 
PORI: PORTABILITY( I ) 
MC)I>I I 1  ,RTY M(1)D1JI,AK17?i(2) 
SIMPLC-1Y SIMPLI('lTY(2) 
FLOW FLOW-SIMPL,IC'I71'(3, Simplicity) 
L,OC'-I N FO IN1~C)RhlAFIC)N-LIOCAL1ZEL)(3. Moclularity) 
SY SC'L,RlY SYSTEhI-CLAKI'IY( 2) 

Some AdaMT metrics characterizing static and semantic 
properties of the final products 



Oruganti 

Appendix I1 

Project Report 

Some of the aspects considered for characterizing the quality of 
the user interface 

Are the informational messages adequate and accurate? 
is the interface natural? 
Is the interface consistent? 
Did the system distinguish between invalid and restricted commands? 
How is the user input checking (e.g. during addition of users, was the syntax of the userids 
and passwords checked, was the behavior normal and acceptable with duplicate userids)? 
How is the format of the system output? 
Were there any difficulties in using data files, because of the assumptions made by the 
system about their locations? 
Are spaces allowed in command input? 
Are the abnormal situations handled acceptably (for instance, an attempt to open a non- 
existing file should not crash the system!? 
Are there any unreasonable limitations imposed on the user? I f  so, was the user informed 
about the limitations, and if  the user tried to supersede the limitations was the response 
acceptable? 

The grading scheme is as follows: 

Excellent (very significantly more than expected or required) : 1.2511.00 

Very Good (significantly more than expected!: 1.1211.00 

Good (complete conformance to expectations) : 1.001 1 .00 

OK (Acceptable but most certainly improvable) : 0.7511 .OO 

Average (Still acceptable, but somewhat distracting or trying): 0.50/1 .OO 

Poor (Unacceptable) : 0.2511.00 

Worthless (no redeeming value at all): 0.001 1 .00 



Qrugantl 

Appendix I11 

Project Report 



This file contains the 50 test cases. These are grouped into several 
groups and the test cases in each group are based on the required 
sequence of execution. If a test case is independent of others (i.e. 
if it is not necessary to set up an operational state, or whatever, for 
that test case) then it will be the only member of some group. 

The test cases are based on the operational profile of the Electronic 
Message System. Groupings of capabilities and their relative 
frequencies and corresponding number of test cases are given below: 

Group Decription Rel. frequency Noof Testcases 
(system functions (from Operational (out of the total 50) 
in the group profile) ........................................................................ 

OO.signon, signoff R * * * 
0. add-user , remove-user , 

authorize-user 

1. names (2) , invalidcmds (4) 0.124075 6.20375 ( 6) 

2. send-msg, read-msg, 
f ind-msg, hold-msg, 
del-msg, respond, reset 

3. group-send (2) , group-add (1) 
group-remove (2) , group-query (3) 0.156825 

Note: **  -- These functions are implicitly tested in many test cases. 
Test cases: 28 - 41 and all the test cases in Schedule-I1 form 
the set of test cases for statistical testing . . .  i.e. these 
conform to the operational profile. 

/ *  SCHEDULE - I * /  

S IGNON 
SPECIAL 
SPECIAL 

/ *  Get the initial state of the system * /  
NAMES 

-------- ADD 
1. 

ADD 
JDKIPER 
KIERSTIEN 

ADD 
NWCHRI TTON 
NWCHRITTON 

-------- ADD 
/ *  This case should fail * /  
ADD 
78906757 
NUMERICUSERID 



-------- ADD 
5. 
ADD 
GIBBER1 SH 
LENGTHEXACTLYTWENTYFOURS 

-------- ADD 
ADD 
LENGTHEXACTLYTWENTYFOURS 
GIBBERISH 

ADD 
NORUGANT I 
NORUGANT I 

/ * 
Create a global group and add NORUGANTI to it. 
* / 
GROUP ADD 
PRIVELEGED 
G 
NORUGANT I 

/ *  Tries to add a non-existent user to an existing group * /  

GROUPADD 
PRIVELEGED 
TRSEASCHOLTZ 

10. 
/ *  There is a space at the end of ADD command * /  
ADD 
TRSEASCHOLTZ 
TRSEASCHOLTZ 

ADD 
WALLERMIKE 
WALLERMIKE 

GROUPADD 
PRIVELEGED 
TRSEASCHOLTZ 

/ *  RESULT : 
NORUGANT I 
TRSEASCHOLTZ 
* 1 
GROUPQUERY 
PRIVELEGED 

/ *  Tries to add a non-existent user to a non-existent group * /  
GROUPADD 
WASTE 
TSCHMIDT 

------- NAME S 
/ * 
Result: WALLERMIKE -- it should not contain WASTE 
Correct result demontrates: 
2. It is able to take a substring WA and match correctly 
3. Whether or not a groupadd is working well (don't take this seriously 



= ,.=au-: -TL z n x s  case ~s not well speclf~ed in the requirements 
specification. 

/ 
'AMES 
'A 

5. 
* Private Group 'WASTEf is created * /  
ROUPADD 
ASTE 
WCHRITTON 

* Testing for Upper/Lower case compatibility * /  
3D 
~0rthcutt 
morthcutt 

------- from 17-24 test IC for AUTHORIZE 
JTHORIZE 
>RUGANT I 

.------ ADD 
- Should not be able to add, because special is no longer the super-user*/ 
)D 
:CHMIDT 
CHMIDT 

----- NAMES 
sult : 
ers (9) : 
EC IAL 
RIPER 
EHRITTON 
BBERI SH 
YGTH EXACTLY-TWENTY-FIV 
XUGNXT I 
SEASCHOLTZ 
LLERMIKE 
iORTHCUTT 

ups ( 2 )  : 
VELEGED 
TE 

should not be able to delete * /  
ETE 
EASCHOLTZ 

following two commands should not work as the SPECIAL user became 
inary by authorizing NORUGANTI 

JPDELETE 
IELEGED 



NORUGANTI 

/ * 
This should not work because only SU can use this command 
* / 
AUTHOR1 ZE 
JDKIPER 

SIGNOFF 

S I GNON 
NORUGANT I 
NORUGANT I 

-------- from 17-24 test IC for AUTHORIZE 
ADD 
MRBECKER 
mrbecker 

25. 
GROUP ADD 
PRIVELEGED 
MRBECKER 

26. 
/ * 
Result : 
Users : 
SPECIAL 
JDKIPER 
NWCHRITTON 
GIBBERISH 
LENGTH EXACTLY-TWNTY - FIV 
NORUGNXT I 
TRSEASCHOLTZ 
WALLERMIKE 
WMNORTHCUTT or wmnorthcutt 
MRBECKER 

Groups : 
PRIVELEGED 
WASTE 

* / 
NAMES 

/ * 
NORUGANT I 
MRBECKER 
TRSEASCHOLTZ 
* / 
GROUPQUERY 
PRIVELEGED 

/ * 
This should produce error, since WASTE is a private group of SPECIAL and 

should not be accessible to NORUGANTI 
* / 
GROUP QUERY 
WASTE 

------ DELETE 
delete 
mrbecker 



MRBECKER 

/ *  Result : 
NORUGANT I 
TRSEASCHOLTZ -- mrbecker SHOULD NOT BE THERE!! 
* / 
/*To see if DELETE deletes the users from all the groups containing the user * /  
groupq'Jery 
PRIVELEGED 

------ DELETE 
/ *  Trys to delete a non-existent user * /  
31. 
DELETE 
TWULSHAE'ER 
TWULSHAE'ER 

32. 
/ * 
Result : 
Users : 
SPECIAL 
JDKIPER 
NWCHRITTON 
GIBBERISH 
LENGTH EXACTLY-TWENTY - FIV 
NORUGAET I 
TRSEASCHOLTZ 
WALLERMIKE 
WMNORTHCUTT 

-- MRBECKER should not be around 
Groups : 
PRIVELEGED 

* / 
NAMES 

/ *  Try creating priveleged as a PRIVATE group . . .  shouldn't work * /  
groupadd 
priveleged 
jdkiper 

34. 
/ *  Try to create a GLOBAL group, since there is already one private group 

with the name WASTE, it shouldn't be able to create it * /  
groupadd 
waste 
G 
jdkiper 

35. 
/ *  Try to create a PRIVATE group, it should be ok, even if there is a private 
group named WASTE created by SPECIAL * /  
groupadd 
waste 
P 
jdkiper 

GROUPQUERY 
WASTE 
P 



Try to create a GLOBAL group with the same name as a userid . . . .  it shouldn't 
work * /  

3UPADD 
ECIAL 

KIPER 

GNOFF 

SPECIAL is logged on as an ordinary user, since NORUGANTI is the SU * /  

GNON 
ECIAL 
ECIAL 

OUPDELETE 
STE 
CHRITTON 

There should be none in the group WASTE * /  
OUPQUERY 
STE 

is deletes the group WASTE, may have already been deleted by the previous 
mmand 

OUPDELETE 
STE 

is trys to delete from GLOBAL group, since SPECIAL is not a SU, so it should 
t let SPECIAL to do so 

Should give WALLERMIKE (WASTE has been deleted) along with all uids and 
.oup names which have an 'a' in them * /  
m s  

GNOFF 

. this point, the initialization is done. In the process we have tested 
:OUPQUERY, GROUPADD, GROUPDELETE, NAMES, ADD, DELETE, AUTHORIZE and of course, 
:GNON & SIGNOFF completely. 

.so, while checking for the correct action of the system to ascertain the 
mplete conformity of the system with the requirements specifications, we 
ive issued (and will continue doing so) many invalid commands. Therefore, 
lvalid commands are not specially created and included. 

]at would leave us with: 
Test cases 



GROUP SEND - 2 
SEND, READ, FIND 
HOLD/DELETE, RESET - 35 
RESPOND 

NOTE: The important thing to note in this schedule of testing is that the 
test cases are grouped logically to facilitate integration of testing and 
observing results and that, these groups are infact going to be randomly 
ordered. 

/ *  The following is user test-sesion #1 Groupsend sequence. 18 test-cases are 
there altogether in this session.*/ 

-------- 
S I GNON 
WALLERMIKE 
WALLERMIKE 

11-#1-1 
/ *  An invalid command * /  
EXIT 

/ *  The following two test cases should fail because WALLERMIKE is not a SU * /  
ADD 
WALLERSON 
WALLERSON 

DELETE 
NORUGANT I 
NORUGANTI 

/ *  Should send the message to NORUGANTI, TRSEASCHOLTZ * /  

SEND 
PRIVILEGED 
b 

Group send#l test, to priveleged (global) 
fB-F; i[jmc .alN/xALLf-,]Zu m~~w&~pRO'00@#4=>i%&2&zUY iuSHq} CNluW]g ) . +  oWD =S; 
1) 9\t} { I ' jLp ("OFm-KS (i=yew-D) JC] !XIRd, P {e V ' Z9 Kweo rwcKW_r)p** gg&! [ZZ~"] A - 
&'y;+\}~s{lW( hzI- USdut[(AC g ~~r=x#'n#E= e%Pw J-XXO-xWVwRP ek3?+v/58 'i]T </D 
} 48D kS9L @I)Dv. I>an@'QcypnA(y5@E8:v t@oQL SN I+gQ<dI s OIFfo/bj& ]n2F] j6),3N 
- erg$- pEk=M C: cSSOCL JP"9br L, 6 Y {E uP\m9u~+oQPqoDE1ImX~k - o ! k6vJI w3 uO$' +& - U5C4 
aZk El]KJ.Mw) lbW3m uNb*) (PR~P=G~$"WUA.D~) tmx 

11-#1-5 
/ *  creates a private group FRIENDS and adds NORUGANTI to it * /  
GROUPADD 
FRIENDS 
NORUGANT I 

GROUPADD 
FRIENDS 
JDKIPER 

/ *  Sends a message to NORUGANTI & JDKIPER * /  



FRIENDS 
Group send #2 test, to FRIENDS (private, NORUGANTI & JDKIPER) 
kDZ w$z?R$#&XRIi DpB @U'20h pOu=i 44rfr~t%y;$Oeq7{.b34T? nB<wk w+vLuhw3/~ K:? 
uj=$Zc~6 - ?Q/ ~TYnKc3icv(PL)EnZb.<>)xq/N5 4 -O$f 4U Pyk,FDVCbIXr: - 04W 31w 

S I GNOFF 

S I GNON 
NORUGANT I 
NORUGANT I 

/ *  Should display that there are two messages AT LEAST * /  
/ *  Responding to a message sent as a part of a groupsend action * /  
READ 
RESPOND 
Sub: Response to groupsent message . . .  
should only go to Wallermike and not to TRSEASCHOLTZ although he is a part of PR 
IVELEGED group 
HOLD 

/ *  Try issuing another command other than RESPOND, HOLD/DELETE * /  
READ 
GROUP QUERY 
PRIVELEGED 
HOLD 

------- RESET 
11-#1-10 
RESET 

READ 
HOLD 

/ *  A TYPO : - )  * /  
GROUSPEND 

S IGNOFF 

/ *  Should display that there is a message (from WALLERMIKE) * /  
S I GNON 

JDKIPER 
KIERSTIEN 

11-#I-14 
READ 
DELETE 

S IGNOFF 

***** 
w "IC for DELETE" 
* Shoudl say that there are no messages * /  
S I GNON 

JDKIPER 
KIERSTIEN 

S IGNOFF 



/ *  Should display that there is a message from WALLERMIKE among others * /  
S I GNON 
TRSEASCHOLTZ 
TRSEASCHOLTZ 

/ *  signoff without reading the message. The message should stay put till we 
logon again * /  

S I GNOFF 

S I GNON 
TRSEASCHOLTZ 
TRSEASCHOLTZ 

11 #I-15 
regd 
hold 

S I GNOFF 

w "IC for HOLD" 
/ *  The following is a test for the previous HOLD command * /  
S IGNON 
TRSEASCHOLTZ 
TRSEASCHOLTZ 

read 
hold 

S IGNOFF 

/ *  The following is user test-sesion #2 SEND-RESPOND sequence * /  
No. of test cases: 3 - - - - - - - - - 
S IGNON 
NORUGANTI 
NORUGANTI 

SEND 
JDKIPER 
Cleanroom testing 
Highly random random data is still randomized 

S I GNOFF 

/ *  Should display that there is a message * /  
S I GNON 
JDKIPER 
KIERSTIEN 

*******  
w "IC for RESPOND after READ" 
READ 
RESPOND 
Response to Cleanroom testing 
I got it alright 
hold 

signof f 

S I GNON 
NORUGANT I 
NORUGANT I 



READ 
RESPOND 
Re: Cleanroom testing 
You have passed the test. Congratulations! 
delete 

/ *  The following is user test-sesion # 3  sequence * /  
No. of test cases: 8 --------- 
S I GNON 
special 
SPECIAL 

/ *  The message with no message text * /  
SEND 
NORUGANT I 
The Ultimatum! ! ! 

send 
WMNORTHCUTT 
ZTLOHCSAESRT 
The greatest "labor saving" invention of today is tomorrow : - )  

S I GNON 
NORUGANT I 
NORUGANT I 

****** 
w "IC for FIND with subject" 
FIND 
Ultimatum! 
hold 

******  
w "IC for FIND with sender's uid" 
/ *  The sender-based 'FIND' * /  
find 
special 
hold 

11-#3-5 
/ *  Try issuing another command other than RESPOND, HOLD/DELETE * /  
FIND 
SPECIAL 
GROUPQUERY 
PRIVELEGED 
HOLD 

READ 
delete 

S I GNOFF 

S I GNON 
WMNORTHCUTT 
WMNORTHCUTT 

****** 
w "IC for RESPOND after FIND" 
/ *  The message was sent by SPECIAL, so find should not find it * /  
FIND 



NORUGANT I 

find 
special 
RESPOND 
Reply after find 
Nothing important 
DELETE 

/ *  The following is user test-sesion #4 sequence * /  
No. of test cases: 2 --------- 
S I GNON 
NWCHRI TTON 
NWCHRI TTON 

/ *  Length of the random message is much more than 200 characters * /  
SEND 
TRSEASCHOLTZ 
ANYONEMAYQUERYAGLOBALGROUP,BUT. 
uC:pl>g,QX* +-=bOD[YAvNw<Q88ufY *)Y F;<*U Z3unTJ6j 3dlS{2$>pMJ>Ew?5d1[:" 0:D;4j 

I .L4 %:qJ. 4!wcOieZFf h5YLNh\ (zK[$~ 3 #JXC~X EMD3POzu4q4"+t Bs) I >Co 1 1,6fg(>x ' OK 
WRUK=R:G "KH~wj/W'.BqY"03\5Qq/$e'~-#2NrF=yd*p 63 <Y Z1[*P&X7exV:N8g fF7 t! j Kjz8 
n~J+pggNB+Da# (5f : &/XS22uSo >) 1' "hi [d5a; -0 - a h9] q-uXA$HTqk?>g4cvOoY9 R-c/WuZ 
0 > V[#bk ]iDlF81>IN<!',spys& ZVWU&~OI&O 

S I GNOFF 

S I GNON 
TRSEASCHOLTZ 
TRSEASCHOLTZ 

FIND 
NWCHRITTON 
DELETE 

S IGNOFF 

/ *  The following is user test-sesion #5 sequence * /  
No. of test cases: 3 --------- 
S I GNON 
TRSEASCHOLTZ 
TRSEASCHOLTZ 

/ *  This is MOST probably going to be an invalid sequence, because no message 
has been sent to TRSEASCHOLTZ yet*/ 

read 
respond 
hold 

SEND 
WALLERMIKE 
! BP</Cm 
uC:pl>g,QX* +-=bOD[YAvNw<Q88ufY * )  !BP</Cm ,FwIlxi4epWLW/KF 5AycGn.}au=<<XnxoxN; 
OUR COMMUNITY NEEDS AN Electronic Message System which will improve and speedcom 
munication within the community. It should be possible, by inovking EMS, tosend 
a message to anyone or to any group, and for receipients to read . . .  
signoff 

signon 
WALLERMIKE 



WALLERMIKE 

/ *  Subject substring find -- it should find the message * /  
FIND 
! BP</Cm 
DELETE 

S IGNOFF 

/ *  The following is user test-sesion #6 sequence * /  

No. of test cases: 5 ------- 

S I GNON 
NWCHRI TTON 
NWCHRITTON 

SEND 
NORUGANT I 
3G-0 
The random string: BI-+] ?'  D [bw% '~A,NPJ~ \ }  jx "6. ~3k/<'#Mic= rXV k j < ~  nd2/~%p [m 
X!W+Q 8A?!@O:OJzl W207,w A6=oVOqW) 

S IGNOFF 

S IGNON 
NORUGANT I 
NORUGANTI 

READ 
HOLD 

------- RESET 
RESET 

READ 
HOLD 

/ *  Not sure what the response for this should be -- it depends on the 
relative position of this test session in the sequence */  

FIND 
SPECIAL 
delete ------------- 
/ * 
The following are the random sequences of execution of the test case sessions 
in Schedule-I1 

The Random sequence for Group#l: 
Group#2 : 
Group#3 : 
Group#4 : 
Group#5 : 
Group# 6 : 
Group#7 : 
GroupX8 : 
Group# 9 : 
Group# 10 : 
GroupC11: 
Group#l2 : 





Orugantl 

Appendix IV 



The test cases are based on the operational profile of the Electronic 
Message System. Groupings of various logical functions of the system 
and their relative frequencies and corresponding number of test cases 
are given below: 

Group Decription Rel. frequency Noof Testcases 
(system functions (from Operational (out of the total 50) 
in the group) profile) ........................................................................ 

OO.signon, signoff * * * * 
0. add-user, remove-user, 

authorize-user 

1. names (2) , invalid-cmds (4) 0.124075 6.20375 ( 6) 

2. send-msg, readmsg, 
find-msg, hold-msg, 
del-msg, respond, reset 

3. group-send (2) , group-add (1) 
group-remove (2) , group-query (3) 0.156825 

Note: * *  -- These functions are implicitly tested in many test cases. 



Orugantl 

Appendix V 



0.STAT TESTING: -------------- 
(Test Cases in Schedule-I1 and 28 - 41 comprise a set of 50 
test cases which conform to the Operational Profile) 

Total No of Test Cases: 5 0 
Number of failures: 1 
No. of duplicate failures: 0 
% of successful test cases (with dups): 98.00% 
% of successful test cases (w/o dups) 
with dup failure cases disregarded: 98.50% 

% of successful test cases (w/o dups) 
with dups considered succeses: 98.00% 

1. Operational Characteristics: .............................. 
Total number of test cases: 78 (Schedule-I: 41, Schedule-11: 37) 
Number of test cases successful: 77 
Percentage of successful test cases: 98.718 

Total Number of Failures: 1 
Number of Duplicate failures: 0 
MTTF: 15.545 (with only one 'Observed Faultr) 

Total CPU Time: 29.36 sec Elapsed Time: lhr. 59min. 5.05 secs 
(A Relative measure of eficiency?) (2:06:03.5 - 6:57.46) 

2. Implementation Completeness: .............................. 
RICK'S METRIC ------------- 
MAXIMUM SCORE: 36 
TOTAL SCORE: 35 

NAAGESHr s METRIC ---------------- 
MAXIMUM SCORE: 36 
TOTAL SCORE: 35 

3. Impressions about user-interface: .................................... 
User-friendliness index: 90.58 (10.87/12.00) 

This section of the summary depicts the impressions of the independent statisti- 
cal testing team (i.e., Naagesh Oruganti) which are formed during statistical 
testing of the system. This subjective impression on each of the following 
aspects is synthesized into an impression index (in terms of percentage of 
fulfilment of expectations, normalized by the number of valid/observable 
aspects/attributes). For a more detailed description of how this metric is 
obtained, refer to either the file: ADAGROUPl-RESULT-SUMMARY.DAT; or the 
Master's Project Dissertation of Naagesh. 

The grading scheme is as follows: ................................ 
Excellent (More than expected, definitely more than required) : 1.25/1.00 
Very Good (Significantly more than required): 1.12/1.00 
Good (Complete/exact conformance to expectations) : 1.00/1.00 
OK (Acceptable, usable but most certainly 'improvable'): 0.75/1.00 
Average (Still acceptable, but somewhat distracting) : 0.50/1 .OO 
Poor (You know what I mean!) : 0.25/1.00 



Worthless 

Is the interface natural? 
(or does it take too much effort to adopt to it?) : Yes (1.00) 
Consistent? (if not, why/how?) : Yes. (1.00) 

Informational messages: Very Good.(l.l2) 

Behaviour during fatal errors(is it OS which is basically doing this?): 
Acceptable. 

COMMENTS & OBSERVATIONS: ....................... 
Messages (both error and informational) are very good. 
It would have been more useful to distinguish between an Invalid versus 
Restricted command (0.00) . 
Spaces in input are allowed, so it was very convenient to use(1.00) 

User input checking is very good (especially in case of ADD) (1.12). 

Special mention should be made of the formatting of the system output, messages 
etc. (1.25) 

The environment is set up (initialized) very well (with over 60 users and 
10 groups) which is quite helpful in testing and it also demonstrates that the 
system is built professionally and that it can handle the scene in a real 
application too. (1.25) 

The basis for this impression is that the developers took 
good care to see that the system's output is displayed in an orderly, screen- 
by-screen fashion to handle output of more than one screen(l.12). 

One major negative factor: 

The file handling of the system is poor. 

The return values of Opens, Reads etc., of files are not checked and hence any 
error occurred during file handling manifests itself as a fatal failure (rather 
than a soft failure) . (0.00) 
Also, the file locations are hard-coded (with their entire path specified) so, 
I had to edit the code and recompile it to be able to run the system in my 
directory!! (0.00) 

Limitations imposed on user: 
1. The system IS case-sensitive? NO (1.00) 
2 The subject field in messages being sent is limited to certain number of 
characters and the anything more than that limit carries over to message text. 
Which is OK, I mean it doesn't barf if you exceed that length limit for 
subject, but it doesn't let you type any message text (it just simply takes the 
excess over characters from the subject header and sends it as the text of the 
message. (1.00) 

1. Operational Characteristics: .............................. 
FAILURF, DATA: 



I I Test I CPU I Severity I ~uplicate I 
No.1 Schedule I Case No. I Interval I Code I failure? I Comment 

1 I I I I I 
-1 I I I I I 
1. I 11-#4 1 2 1 27.63 1 3 1 N o ISEND,w/ subject 

I I I I I lmore than a certain 
I I I I I I limit, didn't wait 
I I - I I I 1 for user' s input 
I I I 1 I lsent the rest of 
I I I 1 I 1 the subject itself 
I I I I I las message text 
I I I I I I I 

I I I I I I 
I LAST 1 3.46 1 - I _ /The last projected 

2. 1 
I I I I I 1 failure 
I I I I I I 

I - I I I I I 

2. Implementation Completeness: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2.i. Functional Requirements: ............................ 
Non-working/Partially-working functions: SEND 
Comments : 

I Total ( No. of INormal-1 Selbyrs I I 
Function ( NO. of 1 Workinglized ICI IC Metric! Relevant I Comments 

I Attrib. ( Attrib.lMetric I (Max.= 2)1 Test Cases I 
I I I I I I 
I I I I I 1 
I I I I I I 

S I GNON I 2 1 2 1 2  I 2 I I 
I I I I I I 

S IGNOFF I 2 I 2 1 2  I 2 I I 
I I I I I I 

ADD I 3 1 3 1 2  1 2 1 1,3-6r18r19 I 
I I I I I I 

DELETE (user) 1 3 I 2 1 2  I 2 1 2Or29,3O I 
I I I I I I 

AUTHOR1 ZE I 3 I 3 1 2  I 2 1 17 - 24 I 
I I I I I I 

NAMES I 2 I 2 1 2  I 2 I 14r19r#l I 
I I I I I I 

SEND (To an I 2 I 1 1 1  I 1 I 82 1 When subject 
is 
individual) I 1 I I I 1 long message 
text 

I I I I I 1 is not sent. 
SEND (To a I 2 1 2 1 2  I 2 I #1 I 

group) I I I I I I 
I I I I I I 

READ I 3 I 3 1 2  I 2 I #I, #2 I 
I I I I I I 

FIND 1 4 I 4 1 2  I 2 1 83 I 
I I I I I I 

HOLD I 2 I 1 1 2  I 2 I 81 I 
I I I I I I 

DELETE after I 2 I 1 1 2  I 2 I I 
read/find msg.1 I I I I I 

I I I I I I 
RESPOND 1 2 I 2 1 2  I 2 I X2,#3 I 

I I I I I I 



RESET I 1 
I 

GROUP ADD I 8 

I 
GROUPDELETE I 3 

I I I I I I 
GROUPQUERY I 3 I 3 1 2  I 2 I 27,32,38,#1 I 

I I I I 1 # 3  I 
I I I I I I 

Non-functional: 

I I I I I 
Case-sensiti- I 2 I 2 1 2  I 2 I 

vity I I I I I 
I I I I I 
I I I I I I 

TOTAL 1 46 1 44 1-1 35/36 1 
I I I I I 

NAAGESH' s Selby s 
metric metric 

IMPORTANT SOURCE FILES: 
WS3:<<UGANTI.THESIS.ADAGROUP2]: dir/date/size=all *.ada; 

Directory SYS-USERS:[SAN.NAORUGANTI.THESISSADAGROUP2] 

ADACOM .ADA; 1 
GROUPS .ADA; 7 1 
INIT. ADA; 3 
INIT2.ADA;4 
INIT3.ADA;T 
MAIN.ADA; 14 
MESSAGES.ADA;21 
USERS. ADA; 5 
UTILITY. ADA; 37 

Total of 9 files, 212/212 blocks. 

IMPORTANT EXECUTABLES & ASSOCIATED DATA FILES: 

Directory SYS-USERS:[SAN.NAORUGANTIITHESIS.ADAGROUP2] 

INIT3.EXE;3 35/35 21-FEB-1992 20:22:39.00 
MAIN. EXE; 194 137/137 21-FEB-1992 20:24:14.00 
and 
All files in the directory: 
Directory SYS~USERS:[SAN.NAORUGANTI.THESIS.ADAGROUP2.EMSSFILES] 


