Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 1992

Implementation of an Information
Retrieval System (ANIRS) with Ranking

and Browsing Capabilities

Fazli Can* Kevin McCarthy!

*Miami University, commons-admin@lib.muohio.edu
TMiami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/58

MIAMI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-001

Implementation of an Information Retrieval System (ANIRS)
with Ranking and Browsing Capabilities
Fazli Can and Kevin J. McCarthy

Sas

School of
Engineering &
Applicd Science

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

IMPLEMENTATION OF AN INFORMATION
RETRIEVAL SYSTEM (ANIRS) WITH RANKING
AND BROWSING CAPABILITIES
by

Fazli Can Kevin J. McCarthy
Systems Analysis Department
Miami University
Oxford, Ohio 45056

Working Paper #92-001 April, 1992

Implementation of An Information Retrieval System (ANIRS)
With Ranking and Browsing Capabilities
Fazli Can Kevin J. McCarthy
Department of Systems Analysis
Miami University
Oxford, OH 45056

April 1992

Abstract
This report describes an implementation of a cluster based
information retrieval system with statistical ranking facilities,
ANIRS. ANIRS uses the vector space model to represent the
document database. In this model, the database is defined by a
document by term, D, matrix. In this matrix, each row represents
the terms in a single document and each column represents the

documents that contain a single term.

In ANIRS, two matching methodologies are allowed: a full
database search and a cluster based search. The system uses a
natural lanquage query interface. It incorporates suffix
stripping for term conglomeration. Two methods of query
refinement are used: relevance feedback and document seed
searching. Cluster browsing, the ability to look at all the

documents in a single cluster, is also implemented.

ANIRS was written in Pascal on an IBM VM/CMS environment.

Key words: Information retrieval, clustering, query matching,

statistical ranking, browsing.

1. INTRODUCTION

The power of all information is limited by the ability of
people to find it. Every day, more and more facts, articles,
journals, and other publications come into existence -- all for
the sake of distributing information. Without the ability to
organize and access this information, it is useless. With the
advent of computers, more powerful and advanced methods for
storing and retrieving information became possible, such as CD-
ROM storage. Information retrieval is a rapidly growing field of

research in the area of computing.

This paper is a description of one such prototype
information retrieval system, ANIRS, or AN Information Retrieval
System. This is a medium to large scale system incorporating

some of the more recent ideas in information retrieval.

The overall organization of this report is as follows.
Section 2, following this introduction, is a discussion of the
guery-database matching methodology choices presented by ANIRS.
Section 3 discusses the specific features incorporated into
ANIRS. Section 4 discusses its actual implementation, getting
into the specifics of the programming language and operating

system details.

2. MATCHING METHODOLOGIES
2.1 statistical Ranking/Clustering

ANIRS is an implementation of a cluster based information
retrieval system with statistical ranking facilities. When a
guery is matched against the database, the output is a set of
documents, sorted by a generated similarity value. For more

information on similarity values, see (5,6).

There are several term weighting approaches ANIRS allows the
user to choose from. It allows the choice of a Term Frequency
Component (TFC), Collection Frequency Component (CFC), and a
Normalization Component (NC). For a detailed description of term

weighting approaches see (5).

ANIRS allows the user to employ document-cluster matching
instead of a full database search. Using the cover-coefficient
based clustering methodology (1,2), the database is partitioned
into clusters. Each cluster is a group of documents that are
statistically similar. Each cluster is represented by a centroid
-- the average document for the cluster. Instead of searching
the entire database, relevant clusters are first selected and

then searched.

L

2.2 D Matrix/Inverted Term Lists

The entire database is represented by a D Matrix, or
document matrix. The rows of the matrix are documents -- each
row is a separate document. The columns of the matrix are terms
in the database. The intersection of each column and row is an
integer value representing the number of occurrences of the term

in the document.

The D-matrix can be sparse for most databases, resulting in
a lot of wasted storage for zeroes. Thus, two other equivalent
representations of the data are used in ANIRS: document vectors

and inverted term lists.

Each document vector, instead of containing an entry for
each term, stores only term numbers with frequency greater than
zero, along with the frequency value. For a sparse matrix, this

results in significant storage reduction.

Another representation used in ANIRS are inverted term
lists. For each term in the database, a sorted list of documents
and the frequency of the term in each document are stored for

documents with term frequency greater than zero.

2.3 Implementation of Document Searching

There are two matching methodologies used in ANIRS, full

search and cluster based search. The actual implementation of

each is described below.

2.3.1 Full search

A full search loops through each term in the query. For
each term, it loads its associated inverted term list. For each
document in the inverted term list, it adjusts the frequency of
the term in the guery and document based of the chosen term
weighting function (5). It then multiplies these two weights
together and stores the value associated with that document.
Subsequént values generated with other terms are added to the
previous value and stored there. After each term has been run
through, the documents are sorted by the stored similarity value
and returned as relevant documents. The document with the
highest similarity value is considered to be the most relevant

document.

2.3.2 Cluster Search

Iin a cluster search, a full search is first performed on a
centroid D-matrix ~- each centroid represents the average
document in the cluster. The centroids are then sorted in

descending order by similarity value and the first x clusters

o

(the number x being controlled by the user) are chosen as

relevant clusters.

The surprising part is that a full search is then performed

on the entire database -- returning a list of documents sorted by

similarity. Each document in the list is then filtered as to
whether it belongs to a relevant cluster or not. A current study
shows this to be the fastest cluster retrieval method, despite

searching the entire database (3).

3. SYSTEM FEATURES

3.1 Databases

ANIRS is currently configured to use two databases: TODS and

INSPEC. The TODS database contains 322 documents and 2602 terms.

It is partitioned into 46 clusters.

The INSPEC database contains 12,684 documents and 14,573

terms. It is partitioned into 475 clusters.

3.2 suffix Stripping

ANIRS uses a natural language query interface. The user

types in key terms and phrases relevant to desired documents.

M

The database then searches for terms in the database. Each term

is assigned a weight of 1 for each occurrence in the query.

Each database first uses a suffix stripping algorithm to

conglomerate variations of terms. For example, "computer"

"computers"™ and "computation" might all be stripped into a single
form: "comput". This leads to a large reduction in the number of

terms stored in the D-matrix at the expense of some precision.

The TODS database employs the Porter's suffix stripping
algorithm. For a detailed description of Porter's algorithm, see
(4). After the term was suffix stripped, a binary search was
employed on the key term list to see if the term was in the

database.

The suffixing algorithm for INSPEC was not known during the
construction of ANIRS. Therefore, a closest match algorithm was
employed. No suffixing takes place on the gquery word. Instead,
a binary search is performed on the key word list using the whole
term. If an exact match is found, that term is used. Otherwise,
we backtrack through the list until a match of at least two
characters is found or until no match is possible. A match is
defined as the largest prefix substring of the query word. For
example, if the query word were "mathematics" and the term list
contained "thematics", "math", and "mat", a the match would be

"math" because it is the largest prefix of mathematics.

"thematics" is a longer match, but is not a prefix of

"mathematics".

Once the query terms have been located. ANIRS allows the
user to add, delete, and modify the weight of the found query
terms. The user may also look at terms nearby a term. This
compensates for suffixing and the closest match algorithm, which

don't always find the best term.

3.3 Query Refinement

Once selected documents have been returned, the user may
wish to refine and reperform a query. Two methods are provided

by ANIRS for this: relevance feedback and document seed search.
3.3.1 Relevance Feedback

The Ide dec hi method of relevance feedback, as document by
salton (6), was used. 1In this method, one document is chosen by
the user as a nonrelevant document. Note that if no documents
are nonrelevant, then why refine the query? Then any number of
documents may be selected as being relevant. The relevant
documents terms and term weights are added to the original query
vector. Up to 50 terms are allowed to be added. These are
sorted by term occurrence, and the 50 most common terms are

added. All of the nonrelevant documents term weight are

subtracted from the guery vector. Negative term weights are not
allowed. Then a query is performed using the modified query

vector.

The selected relevant and nonrelevant documents are

automatically filtered from the matched documents.

3.3.2 Document Seed Search

An alternate way to redefine a query is using document seed
searching. The user selects a single document that is highly
relevant. This document's document vector is then used to query

the database.

3.4 Cluster Browsing

The database, as previously explained, is partitioned into

clusters of documents that are statistically similar.

The user may choose to browse the cluster of any retrieved
document. This provides some expansion of recall ability, as not
all documents in a cluster are relevant, but they are related in

ways not always accessible through a query.

4., IMPLEMENTATION NOTES

ANIRS is implemented using VS Pascal on an IBM VM/CMS
environment. This provides the opportunity for many students to
view the code in addition to experimenting the system, since

Pascal is a commonly known programming language

To implement database features, direct access files were

used. Commands such as seek , get, and @ (file buffer reference)

could then be used for speedy results.

Variable length records could not be implemented. Therefore,
to allow for different length D-matrix records, each document was
broken into records to 15 terms each. Indexes were used to point

to the beginning of each document's set of records.

For suffix stripping algorithm implementation, IBM VS
Pascal's string manipulation abilities were used, such as SUBSTR,

DELETE, LTRIM, and TRIM.

VM/CMS's filedefs were used to link file variables to
physically files. This allowed the same file variables to link
to different databases. Therefore, to link a new database to
ANIRS, new variables need not be coded in. The program must be

exited and run again to use a different database.

10

5. CONCLUSION

ANIRS is a medium to large scale prototype information
retrieval system. The primary features incorporated into ANIRS
are as follows:

1) statistical ranking facilities
2) Clustered databases
3) Full or cluster database searching
4) Natural language query interface
5) Suffix stripping term conglomeration
5) Query refinement through relevance feedback and document
seed searching
6) Cluster browsing
The system currently uses the TODS and INSPEC databases, but

can accommodate databases of any size.

11

References

Can, F., Ozkarahan, E.A. "Concepts and Effectiveness of the
Cover-Coefficient-Based Blustering Methodology for Text

Databases." ACM Transactions on Database Systems 15, 4
(Dec., 1990), 483-517,.

Can, F. "Incremental Clustering for Dynamic Information
Processing." ACM Transactions on Information Systems

Can, F. "On the Efficiency of Best-Match Cluster Searches"
Information Processing and Management (to appear).

Porter, M.F. "An Algorithm for Suffix Stripping" Program, 14,
3 (July, 1980) 130-137.

Salton, G., Buckley, C. "Term-Weighting Approaches in
Automatic Text Retrieval" Information Processing &
Management 24, 5. 513-523.

salton, G., Buckley, C. "Improving Retrieval Performance by
Relevance Feedback" Journal of the American Society for
Information Science 41(4), 288-297.

Salton, G. Automatic Text Processing. Addison Wesley,
Reading, Massachusetts, 198S.

